In Situ Detection of Trace Heavy Metal Cu in Water by Atomic Emission Spectrometry of Nebulized Discharge Plasma at Atmospheric Pressure
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Setup
2.2. Reagents and Samples
3. Results and Discussion
3.1. Electrical and Spectral Characteristics
3.2. Optimization of Experimental Conditions
3.3. Limit of Detection
3.4. Comparison of LOD with Other Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Pal, S.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; et al. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci. Technol. 2021, 109, 674–689. [Google Scholar] [CrossRef]
- Niu, G.-H.; Knodel, A.; Burhenn, S.; Brandt, S.; Franzke, J. Review: Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry. Anal. Chim. Acta 2021, 1147, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-J.; Yang, H.-Y.; Yuan, X.; Zhang, M. Recent developments of heavy metals detection in traditional Chinese medicine by atomic spectrometry. Microchem. J. 2021, 160, 105726. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Y.-L.; Wang, J.-H. Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry. J. Anal. At. Spectrom. 2017, 32, 2118–2126. [Google Scholar] [CrossRef]
- Souza, S.-O.; Costa, S.-S.-L.; Brum, B.-C.-T.; Santos, S.-H.; Garcia, C.-A.-B.; Araujo, R.-G.-O. Determination of nutrients in sugarcane juice using slurry sampling and detection by ICP OES. Food Chem. 2019, 273, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.-T.; Yuan, H.; Liu, B.; Peng, J.-J.; Xu, L.-P.; Yang, D.Z. Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 2020, 12, 5747–5766. [Google Scholar] [CrossRef]
- Bruggeman, P.-J.; Iza, F.; Brandenburg, R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017, 26, 123002. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.-S.; Yang, C.; Zheng, H.-T.; Liu, J.-X.; Mao, X.-F.; Hu, S.-H.; Zhu, Z.-L. Direct determination of cadmium in rice by solid sampling electrothermal vaporization atmospheric pressure glow discharge atomic emission spectrometry using a tungsten coil trap. J. Anal. At. Spectrom. 2019, 34, 1786–1793. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Z.-J.; Wang, Y.-Y.; Zhang, X.-N.; Yu, K.; Zhang, H.; Zhang, J.; Gao, J.; Liu, X.-Y.; Zhang, H.-N.; et al. Rapid determination of cadmium in rice by portable dielectric barrier discharge-atomic emission spectrometer. Food Chem. 2020, 310, 125824. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Liu, J.-X.; Mao, X.-F.; Chen, G.-Y.; Tian, D. Review of miniaturized and portable optical emission spectrometry based on microplasma for elemental analysis. Trends Anal. Chem. 2021, 144, 116437. [Google Scholar] [CrossRef]
- Cserfalvi, T.; Mezei, P.; Apai, P. Emission studies on a glow discharge in atmospheric pressure air using water as a cathode. J. Phys. D Appl. Phys. 1993, 26, 2184–2188. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.-M.; Lu, Q.-F.; Sun, D.-X.; Wang, X.; Zhu, S.-W.; Zhang, Z.-C.; Yang, W. Evaluation of analytical performance for the simultaneous detection of trace Cu, Co and Ni by using liquid cathode glow discharge-atomic emission spectrometry. Spectrochim. Acta Part B 2018, 145, 64–70. [Google Scholar] [CrossRef]
- Yuan, H.; Zhou, X.-F.; Nie, Y.; Li, Y.; Liang, J.-P.; Yang, D.-Z.; Yan, E.-Y.; Wang, W.-C.; Xu, Y. Temporal resolved atomic emission spectroscopy on a pulsed electrolyte cathode discharge for improving the detection sensitivity of Cu. Spectrochim. Acta Part B 2021, 177, 106072. [Google Scholar] [CrossRef]
- Jamroz, P.; Greda, K.; Dzimitrowicz, A.; Swiderski, K.; Pohl, P. Sensitive Determination of Cd in Small-Volume Samples by Miniaturized Liquid Drop Anode Atmospheric Pressure Glow Discharge Optical Emission Spectrometry. Anal. Chem. 2017, 89, 5729–5733. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wu, Z.-C.; Wang, Y.-Y.; Zhang, J.; Zhang, X.-N.; Zhang, H.-N.; Wu, W.-H.; Gao, J.; Jiang, J. Portable Dielectric Barrier Discharge-Atomic Emission Spectrometer. Anal. Chem. 2017, 89, 2205–2210. [Google Scholar] [CrossRef]
- Li, Z.-A.; Tan, Q.; Hou, X.-D.; Xu, K.-L.; Zheng, C.-B. Single Drop Solution Electrode Glow Discharge for Plasma Assisted-Chemical Vapor Generation: Sensitive Detection of Zinc and Cadmium in Limited Amounts of Samples. Anal. Chem. 2014, 86, 12093–12099. [Google Scholar] [CrossRef]
- Zheng, H.-T.; Ma, J.-Z.; Zhu, Z.-L.; Tang, Z.-Y.; Hu, S.-H. Dielectric barrier discharge micro-plasma emission source for the determination of lead in water samples by tungsten coil electro-thermal vaporization. Talanta 2015, 132, 106–111. [Google Scholar] [CrossRef]
- Yuan, X.; Li, K.-J.; Zhang, Y.-T.; Miao, Y.-T.; Xiang, Y.; Sha, Y.; Zhang, M.; Huang, K. Point discharge microplasma for the determination of mercury in Traditional Chinese Medicines by chemical vapor generation atomic emission spectrometry. Microchem. J. 2020, 155, 104695. [Google Scholar] [CrossRef]
- Greda, K.; Jamroz, P.; Pohl, P. Ultrasonic nebulization atmospheric pressure glow discharge- Preliminary study. Spectrochim. Acta Part B 2016, 121, 22–27. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, Y.-L.; Wang, J.-H. Alternating-Current-Driven Microplasma for Multielement Excitation and Determination by Optical-Emission Spectrometry. Anal. Chem. 2018, 90, 10607–10613. [Google Scholar] [CrossRef]
- Jiang, X.-M.; Chen, Y.; Zheng, C.-B.; Hou, X.-D. Electrothermal Vaporization for Universal Liquid Sample Introduction to Dielectric Barrier Discharge Microplasma for Portable Atomic Emission Spectrometry. Anal. Chem. 2014, 86, 5220–5224. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, R.-E. Photochemical vapor generation: A radical approach to analyte introduction for atomic spectrometry. J. Anal. At. Spectrom. 2017, 32, 2319–2340. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Gao, X.-G.; Ji, Z.-N.; Yu, Y.-L.; Wang, J.-H. Nonthermal optical emission spectrometry for simultaneous and direct determination of zinc, cadmium and mercury in spray. Analyst 2018, 143, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, D.-Z.; Yuan, H.; Liang, J.-P.; Xu, T.; Zhao, Z.-L.; Zhou, X.-F.; Zhang, L.; Wang, W.-C. Detection of trace heavy metals using atmospheric pressure glow discharge by optical emission spectra. High Volt. 2019, 4, 228–233. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, D.-Z.; Li, X.; Zhang, L.; Zhou, X.-F.; Wang, W.-C.; Xu, Y. A pulsed electrolyte cathode discharge used for metal element analysis by atomic emission spectrometry. Phys. Plasmas 2019, 26, 053505. [Google Scholar] [CrossRef]
- Zhao, T.-L.; Xu, Y.; Song, Y.-H.; Li, X.-S.; Liu, J.-L.; Liu, J.-B.; Zhu, A.-M. Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra. J. Phys. D Appl. Phys. 2013, 46, 345201. [Google Scholar] [CrossRef]
- Huang, S.; Lia, T.; Zhang, Z.-F.; Ma, P.-F. Rotational and vibrational temperatures in the spark plasma by various discharge energies and strategies. Appl. Energy 2019, 251, 113358. [Google Scholar] [CrossRef]
- Liu, K.; Ren, W.; Ran, C.-F.; Zhou, R.-S.; Tang, W.-B.; Zhou, R.-W.; Yang, Z.-H.; Ostrikov, K. Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: Effects of gas flow on chemical reactions. J. Phys. D Appl. Phys. 2021, 54, 065201. [Google Scholar] [CrossRef]
- Lu, Q.-F.; Yang, S.-X.; Sun, D.-X.; Zheng, J.-D.; Li, Y.; Yu, J.; Su, M.-G. Direct determination of Cu by liquid cathode glow discharge-atomic emission spectrometry. Spectrochim. Acta Part B 2016, 125, 136–139. [Google Scholar] [CrossRef]
- He, Q.; Wang, X.-X.; He, H.-J.; Zhang, J. A Feasibility Study of Rare-Earth Element Vapor Generation by Nebulized Film Dielectric Barrier Discharge and Its Application in Environmental Sample Determination. Anal. Chem. 2020, 92, 2535–2542. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.-L.; Bao, Z.-Y.; Zheng, H.-T.; Hu, S.-H. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma−chemical vapor generation coupled with atomic fluorescence spectrometry. Spectrochim. Acta Part B 2018, 141, 15–21. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.-L.; Li, H.-L.; He, D.; Li, Y.-T.; Zheng, H.-T.; Gan, Y.-Q.; Li, Y.-X.; Belshaw, N.-S.; Hu, S.H. Liquid Spray Dielectric Barrier Discharge Induced Plasma−Chemical Vapor Generation for the Determination of Lead by ICPMS. Anal. Chem. 2017, 89, 6827–6833. [Google Scholar] [CrossRef] [PubMed]
- Greda, K.; Jamro, P.; Pohl, P. The improvement of the analytical performance of direct current atmospheric pressure glow discharge generated in contact with the small-sized liquid cathode after the addition of non-ionic surfactants to electrolyte solutions. Talanta 2013, 108, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, Y.-J.; Wu, D.-F.; Yu, Y.-L.; Wang, J.-H. Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination. Anal. Chem. 2016, 88, 4192–4195. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhu, S.-W.; Lu, Q.-F.; Zhang, Z.-C.; Sun, D.-X.; Zhang, X.-M.; Wang, X.; Yang, W. Liquid Cathode Glow Discharge as a Microplasma Excitation Source for Atomic Emission Spectrometry for the Determination of Trace Heavy Metals in Ore Samples. Anal. Lett. 2018, 51, 2128–2140. [Google Scholar] [CrossRef]
- World Health Organisation. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011; pp. 229–230, 433–434. [Google Scholar]
Element | Working Curves | r2 | s | LOD (mg/L) |
---|---|---|---|---|
Cu | I = 5297c + 7845 | 0.9975 | 145.759 | 0.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yuan, H.; Li, S.; Wang, W.; Yang, D. In Situ Detection of Trace Heavy Metal Cu in Water by Atomic Emission Spectrometry of Nebulized Discharge Plasma at Atmospheric Pressure. Appl. Sci. 2022, 12, 4939. https://doi.org/10.3390/app12104939
Yang H, Yuan H, Li S, Wang W, Yang D. In Situ Detection of Trace Heavy Metal Cu in Water by Atomic Emission Spectrometry of Nebulized Discharge Plasma at Atmospheric Pressure. Applied Sciences. 2022; 12(10):4939. https://doi.org/10.3390/app12104939
Chicago/Turabian StyleYang, Huixue, Hao Yuan, Sisi Li, Wei Wang, and Dezheng Yang. 2022. "In Situ Detection of Trace Heavy Metal Cu in Water by Atomic Emission Spectrometry of Nebulized Discharge Plasma at Atmospheric Pressure" Applied Sciences 12, no. 10: 4939. https://doi.org/10.3390/app12104939
APA StyleYang, H., Yuan, H., Li, S., Wang, W., & Yang, D. (2022). In Situ Detection of Trace Heavy Metal Cu in Water by Atomic Emission Spectrometry of Nebulized Discharge Plasma at Atmospheric Pressure. Applied Sciences, 12(10), 4939. https://doi.org/10.3390/app12104939