Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp
Abstract
:1. Introduction
1.1. Distribution, Abundance, and Importance of Microplastics in the Aquatic Environment
1.2. Aim of the Study
2. Materials and Methods
3. Result Statements from the Analysis of the Available Literature
3.1. Microplastics: Delivery Vehicles for Micropollutants in Aquatic Environments
3.1.1. Factors Influencing the Sorption Capacity of Microplastics to Micro-Pollutants
Physical Properties of Microplastics
Chemical Properties of Microplastics and Micro-Pollutants
Age of Microplastics
Environmental Factors
3.2. Microplastics: The Potential for Microplastic-Sorbed Micropollutant Bioaccumulation in Aquatic Organisms
3.3. Joint Effects of Microplastics and Micropollutants
3.4. Fate of Glyphosate in the Environment and Its Toxic Effects on Organisms
4. A Case Study of Glyphosate Transport via Polyethylene Microplastic Fomites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helmenstine, A.M. Plastic Definition and Examples in Chemistry. Available online: https://www.thoughtco.com/plastic-chemical-composition-608930 (accessed on 17 May 2021).
- Tiseo, I. Production of Plastics Worldwide from 1950 to 2019 (in Million Metric Tons). Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 15 January 2022).
- Kane, I.A.; Clare, M.A. Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: A review and future directions. Front. Earth Sci. 2019, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, H.; Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, K.; Qiao, F.; Liu, Q.; Wei, Z.; Qi, H.; Cui, S.; Yue, X.; Deng, Y.; An, L. Microplastics releasing from personal care and cosmetic products in China. Mar. Pollut. Bull. 2017, 123, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef]
- Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal. Chem. 2015, 65, 47–53. [Google Scholar] [CrossRef]
- Moore, C.J.; Moore, S.L.; Leecaster, M.K.; Weisberg, S.B. A Comparison of Plastic and Plankton in the North Pacific Central Gyre. Mar. Pollut. Bull. 2001, 42, 1297–1300. [Google Scholar] [CrossRef]
- Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf Sci. 2013, 130, 54–61. [Google Scholar] [CrossRef]
- Cozar, A.; Sanz-Martin, M.; Marti, E.; Gonzalez-Gordillo, J.I.; Ubeda, B.; Galvez, J.A.; Irigoien, X.; Duarte, C.M. Plastic accumulation in the Mediterranean sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef] [Green Version]
- Suaria, G.; Avio, C.G.; Mineo, A.; Lattin, G.L.; Magaldi, M.G.; Belmonte, G.; Moore, C.J.; Regoli, F.; Aliani, S. The Mediterranean Plastic Soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 2016, 6, 37551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtene-Jones, W.; Quinn, B.; Gary, S.F.; Mogg, A.O.M.; Narayanaswamy, B.E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Pollut. 2017, 231, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Coley, I.; Duran-Izquierdo, M.; Rodriguez-Cavallo, E.; Mercado-Camargo, J.; Mendez-Cuadro, D.; Olivero-Verbel, J. Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Mar. Pollut. Bull. 2019, 146, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, A.; Øysæd, K.B.; Agustsson, T.; van Hoytema, N.; van Thiel, T.; Grati, F. First record of characterization, concentration and distribution of microplastics in coastal sediments of an urban fjord in south west Norway using a thermal degradation method. Chemosphere 2019, 227, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.L.; Obbard, J.P. Prevalence of microplastics in Singapore’s coastal marine environment. Mar. Pollut. Bull. 2006, 52, 761–767. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Otero, V.; Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 2014, 95, 89–95. [Google Scholar] [CrossRef]
- Desforges, J.-P.W.; Galbraith, M.; Dangerfield, N.; Ross, P.S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014, 79, 94–99. [Google Scholar] [CrossRef]
- Lusher, A.L.; Burke, A.; O’Connor, I.; Officer, R. Microplastic pollution in the Northeast Atlantic Ocean: Validated and opportunistic sampling. Mar Pollut Bull 2014, 88, 325–333. [Google Scholar] [CrossRef]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 14947. [Google Scholar] [CrossRef] [Green Version]
- Claessens, M.; Meester, S.D.; Landuyt, L.V.; Clerck, K.D.; Janssen, C.R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 2011, 62, 2199–2204. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, C.; Kumbur, H.; Gökdağ, K.; Kıdeyş, A.E.; Sanchez-Vidal, A. Microplastics composition and load from three wastewater treatment plants discharging into Mersin Bay, north eastern Mediterranean Sea. Mar. Pollut. Bull. 2020, 150, 110776. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, J.; Cai, L. Current understanding of microplastics in the environment: Occurrence, fate, risks, and what we should do. Integr. Environ. Assess. Manag. 2017, 13, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Dimzon, I.K.; Eubeler, J.; Knepper, T.P. Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. In Freshwater Microplastics: Emerging Environmental Contaminants? Wagner, M., Lambert, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 51–67. [Google Scholar]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- van Emmerik, T.; Schwarz, A. Plastic debris in rivers. WIREs Water 2020, 7, e1398. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.J.; Warrack, S.; Langen, V.; Challis, J.K.; Hanson, M.L.; Rennie, M.D. Microplastic contamination in Lake Winnipeg, Canada. Environ. Pollut. 2017, 225, 223–231. [Google Scholar] [CrossRef]
- Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.; Tritthart, M.; Glas, M.; Schludermann, E. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 2014, 188, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.R.A.; Costa, M.F.; Barletta, M. Distribution patterns of microplastics within the plankton of a tropical estuary. Environ. Res. 2014, 132, 146–155. [Google Scholar] [CrossRef]
- Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Int-Veen, I.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K.; Norén, F. Screening of Microplastic Particles in and Down-Stream a Wastewater Treatment Plant; Report C55; Swedish Environmental Research Institute: Stockholm, Sweden, 2014; p. 22. [Google Scholar]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Graham, E.R.; Thompson, J.T. Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 2009, 368, 22–29. [Google Scholar] [CrossRef]
- Mazurais, D.; Ernande, B.; Quazuguel, P.; Severe, A.; Huelvan, C.; Madec, L.; Mouchel, O.; Soudant, P.; Robbens, J.; Huvet, A.; et al. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Mar. Environ. Res. 2015, 112, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Murray, F.; Cowie, P.R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 2011, 62, 1207–1217. [Google Scholar] [CrossRef]
- Welden, N.A.C.; Cowie, P.R. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ. Pollut. 2016, 218, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, C.; Perez-Venegas, D.J.; Urbina, M.; Gonzalez, C.; Echeveste, P.; Aldana, M.; Pulgar, J.; Galbán-Malagón, C. Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Mar. Pollut. Bull. 2020, 151, 110795. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [PubMed]
- Wardrop, P.; Shimeta, J.; Nugegoda, D.; Morrison, P.D.; Miranda, A.; Tang, M.; Clarke, B.O. Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish. Environ. Sci. Technol. 2016, 50, 4037–4044. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Niven, S.J.; Galloway, T.S.; Rowland, S.J.; Thompson, R.C. Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity. Curr. Biol. 2013, 23, 2388–2392. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, E.; Sureda, A.; Tejada, S.; Faggio, C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018, 64, 164–171. [Google Scholar] [CrossRef]
- Naik, R.K.; Naik, M.M.; D’Costa, P.M.; Shaikh, F. Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health. Mar. Pollut. Bull. 2019, 149, 110525. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf. 2020, 189, 109913. [Google Scholar] [CrossRef]
- Zhang, H.; Fei, Y.; Wang, H.; Chen, Y.; Huang, S.; Yu, B.; Wang, J.; Tong, Y.; Wen, D.; Zhou, B.; et al. Interaction of Microplastics and Organic Pollutants: Quantification, Environmental Fates, and Ecological Consequences. In Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges; He, D., Luo, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 161–184. [Google Scholar]
- Kwon, J.-H.; Chang, S.; Hong, S.H.; Shim, W.J. Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives. Integr. Environ. Assess. Manag. 2017, 13, 494–499. [Google Scholar] [CrossRef]
- Chen, C.-S.; Le, C.B.; Chiu, M.-H.; Chin, W. The impact of nanoplastics on marine dissolved organic matter assembly. Sci. Total Environ. 2018, 634, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.; Galgani, F.; Thompson, R.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lithner, D.; Damberg, J.; Dave, G.; Larsson, Å. Leachates from plastic consumer products—Screening for toxicity with Daphnia magna. Chemosphere 2009, 74, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Galloway, T.; Thompson, R. Microplastic—An Emerging Contaminant of Potential Concern? Integr. Environ. Assess. Manag. 2007, 3, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Swan, S.; Moore, C.; vom Saal, F. Our plastic age. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1973–1976. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.; Groven, A.S.; Hovsbakken, I.A.; Del Puerto, O.; Krause, D.F.; Sarno, A.; Booth, A.M. UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives. Sci. Total Environ. 2021, 755, 143170. [Google Scholar] [CrossRef]
- Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.; Lam, P.K.S. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef]
- Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Tian, L.; Liu, X.; Qi, Z.; Ma, Y.; Ji, R.; Chen, W. Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. Environ. Sci. Technol. 2019, 53, 5805–5815. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Liu, G.; Zhang, Z.; Wu, H.; Cui, B.; Bai, J.; Zhang, W. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicol. Environ. Saf. 2019, 173, 331–338. [Google Scholar] [CrossRef]
- Agboola, O.D.; Benson, N.U. Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review. Front. Environ. Sci. 2021, 9, 167. [Google Scholar] [CrossRef]
- Antunes, J.C.; Frias, J.G.L.; Micaelo, A.C.; Sobral, P. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuar. Coast. Shelf Sci. 2013, 130, 62–69. [Google Scholar] [CrossRef]
- Fisner, M.; Majer, A.; Taniguchi, S.; Bícego, M.; Turra, A.; Gorman, D. Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets. Mar. Pollut. Bull. 2017, 122, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Fries, E.; Zarfl, C. Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ. Sci. Pollut. Res. 2012, 19, 1296–1304. [Google Scholar] [CrossRef]
- Karapanagioti, H.K.; Klontza, I. Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on Lesvos island beaches (Greece). Mar. Environ. Res. 2008, 65, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environ. Sci. Technol. 2001, 35, 318–324. [Google Scholar] [CrossRef]
- Pascall, M.A.; Zabik, M.E.; Zabik, M.J.; Hernandez, R.J. Uptake of Polychlorinated Biphenyls (PCBs) from an Aqueous Medium by Polyethylene, Polyvinyl Chloride, and Polystyrene Films. J. Agric. Food Chem. 2005, 53, 164–169. [Google Scholar] [CrossRef]
- Teuten, E.L.; Rowland, S.J.; Galloway, T.S.; Thompson, R.C. Potential for Plastics to Transport Hydrophobic Contaminants. Environ. Sci. Technol. 2007, 41, 7759–7764. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Llorca, M.; Schirinzi, G.; Martínez, M.; Barceló, D.; Farré, M. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environ. Pollut. 2018, 235, 680–691. [Google Scholar] [CrossRef]
- Wang, F.; Shih, K.M.; Li, X.Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere 2015, 119, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C.; Shao, Y.T.; Pan, H.-J.; Bhubalan, K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- Guo, X.; Wang, X.; Zhou, X.; Kong, X.; Tao, S.; Xing, B. Sorption of Four Hydrophobic Organic Compounds by Three Chemically Distinct Polymers: Role of Chemical and Physical Composition. Environ. Sci. Technol. 2012, 46, 7252–7259. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Wu, B.; Taylor, C.M.; Knappe, D.R.U.; Nanny, M.A.; Barlaz, M.A. Factors Controlling Alkylbenzene Sorption to Municipal Solid Waste. Environ. Sci. Technol. 2001, 35, 4569–4576. [Google Scholar] [CrossRef]
- Yu, F.; Yang, C.; Zhu, Z.; Bai, X.; Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 2019, 694, 133643. [Google Scholar] [CrossRef]
- Hüffer, T.; Weniger, A.-K.; Hofmann, T. Sorption of organic compounds by aged polystyrene microplastic particles. Environ. Pollut. 2018, 236, 218–225. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, Z.; Yang, Y.; Sun, Y.; Yu, F.; Ma, J. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ. Pollut. 2019, 246, 26–33. [Google Scholar] [CrossRef]
- Mylläri, V.; Ruoko, T.-P.; Syrjälä, S. A comparison of rheology and FTIR in the study of polypropylene and polystyrene photodegradation. J. Appl. Polym. Sci. 2015, 132, 42246. [Google Scholar] [CrossRef]
- Shen, X.-C.; Li, D.-C.; Sima, X.-F.; Cheng, H.-Y.; Jiang, H. The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column. Environ. Res. 2018, 166, 377–383. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Turner, A.; Holmes, L. Adsorption of trace metals by microplastic pellets in fresh water. Environ. Chem. 2015, 12, 600–610. [Google Scholar] [CrossRef]
- Mattsson, K.; Hansson, L.A.; Cedervall, T. Nano-plastics in the aquatic environment. Environ. Sci. Process. Impacts 2015, 17, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.P.; Prentice, E.; Cresswell, T.; Howell, N. Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm. J. Environ. Radioact. 2018, 190–191, 130–133. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Chipman, D.W.; Goddard, J.G.; Ho, C.; Newberger, T.; Sweeney, C.; Munro, D.R. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 2014, 164, 95–125. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Pang, J.; Chen, S.; Jia, H. Sorption properties of tylosin on four different microplastics. Chemosphere 2018, 209, 240–245. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 2014, 167, 25–32. [Google Scholar] [CrossRef]
- Borrirukwisitsak, S.; Keenan, H.; Gauchotte-Lindsay, C. Effects of Salinity, pH and Temperature on the Octanol-Water Partition Coefficient of Bisphenol A. Int. J. Environ. Sci. Dev. 2012, 3, 460–464. [Google Scholar] [CrossRef]
- Hu, J.-Q.; Yang, S.-Z.; Guo, L.; Xu, X.; Yao, T.; Xie, F. Microscopic investigation on the adsorption of lubrication oil on microplastics. J. Mol. Liq. 2017, 227, 351–355. [Google Scholar] [CrossRef]
- Velzeboer, I.; Kwadijk, C.J.A.F.; Koelmans, A.A. Strong Sorption of PCBs to Nanoplastics, Microplastics, Carbon Nanotubes, and Fullerenes. Environ. Sci. Technol. 2014, 48, 4869–4876. [Google Scholar] [CrossRef]
- Zhan, Z.; Wang, J.; Peng, J.; Xie, Q.; Huang, Y.; Gao, Y. Sorption of 3,3′,4,4′-tetrachlorobiphenyl by microplastics: A case study of polypropylene. Mar. Pollut. Bull. 2016, 110, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Bakir, A.; Rowland, S.J.; Thompson, R.C. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar. Coast. Shelf Sci. 2014, 140, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Liu, F.; Brookes, P.; Xu, J. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ. Pollut. 2018, 240, 87–94. [Google Scholar] [CrossRef]
- Seidensticker, S.; Zarfl, C.; Cirpka, O.A.; Fellenberg, G.; Grathwohl, P. Shift in Mass Transfer of Wastewater Contaminants from Microplastics in the Presence of Dissolved Substances. Environ. Sci. Technol. 2017, 51, 12254–12263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, J.; Zhou, B.; Zhou, Y.; Dai, Z.; Zhou, Q.; Chriestie, P.; Luo, Y. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ. Pollut. 2018, 243, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- UN GHS. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revised ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2015. [Google Scholar]
- Tourinho, P.S.; Kočí, V.; Loureiro, S.; van Gestel, C.A.M. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ. Pollut. 2019, 252, 1246–1256. [Google Scholar] [CrossRef]
- Qu, H.; Ma, R.; Wang, B.; Zhang, Y.; Yin, L.; Yu, G.; Deng, S.; Huang, J.; Wang, Y. Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem. J. Hazard. Mater. 2018, 359, 104–112. [Google Scholar] [CrossRef]
- Bakir, A.; Rowland, S.J.; Thompson, R.C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ. Pollut. 2014, 185, 16–23. [Google Scholar] [CrossRef]
- Paul-Pont, I.; Lacroix, C.; González Fernández, C.; Hégaret, H.; Lambert, C.; Le Goïc, N.; Frère, L.; Cassone, A.-L.; Sussarellu, R.; Fabioux, C.; et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 2016, 216, 724–737. [Google Scholar] [CrossRef] [Green Version]
- Chua, E.M.; Shimeta, J.; Nugegoda, D.; Morrison, P.D.; Clarke, B.O. Assimilation of Polybrominated Diphenyl Ethers from Microplastics by the Marine Amphipod, Allorchestes Compressa. Environ. Sci. Technol. 2014, 48, 8127–8134. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Kumar, A.; Neale, P.; Leusch, F. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomus tepperi) in synthetic and river water. Sci. Total Environ. 2019, 671, 971–975. [Google Scholar] [CrossRef]
- Mohamed Nor, N.H.; Koelmans, A.A. Transfer of PCBs from Microplastics under Simulated Gut Fluid Conditions Is Biphasic and Reversible. Environ. Sci. Technol. 2019, 53, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Servos, M.R. Review of the Aquatic Toxicity, Estrogenic Responses and Bioaccumulation of Alkylphenols and Alkylphenol Polyethoxylates. Water Qual. Res. J. 1999, 34, 123–178. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Figueiredo, N.; Carvalho, F.; Carvalho, C.; Guilhermino, L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Pu, S.; Liu, S.; Bai, Y.; Mandal, S.; Xing, B. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 2020, 261, 114089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qu, Q.; Lu, T.; Ke, M.; Zhu, Y.; Zhang, M.; Zhang, Z.; Du, B.; Pan, X.; Sun, L.; et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environ. Pollut. 2018, 243, 1106–1112. [Google Scholar] [CrossRef]
- Zhu, Z.-l.; Wang, S.-c.; Zhao, F.-f.; Wang, S.-g.; Liu, F.-f.; Liu, G.-z. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ. Pollut. 2019, 246, 509–517. [Google Scholar] [CrossRef]
- McLaughlin, M.; Lanno, R. Use of “Bioavailability” as a term in ecotoxicology. Integr. Environ. Assess. Manag. 2014, 10, 138–140. [Google Scholar] [CrossRef]
- Bhagat, J.; Nishimura, N.; Shimada, Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. J. Hazard. Mater. 2021, 405, 123913. [Google Scholar] [CrossRef]
- Roell, K.R.; Reif, D.M.; Motsinger-Reif, A.A. An Introduction to Terminology and Methodology of Chemical Synergy—Perspectives from Across Disciplines. Front. Pharmacol. 2017, 8, 158. [Google Scholar] [CrossRef]
- Greco, W.R.; Bravo, G.; Parsons, J.C. The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev. 1995, 47, 331–385. [Google Scholar] [PubMed]
- Levy, G. Apparent Potentiating Effect of a Second Dose of Drug. Nature 1965, 206, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Carvalho, C.; Guilhermino, L. Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Sci. Rep. 2018, 8, 15655. [Google Scholar] [CrossRef] [Green Version]
- Guilhermino, L.; Vieira, L.R.; Ribeiro, D.; Tavares, A.S.; Cardoso, V.; Alves, A.; Almeida, J.M. Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Sci. Total Environ. 2018, 622–623, 1131–1142. [Google Scholar] [CrossRef]
- Thiagarajan, V.; Iswarya, V.P.A.J.; Seenivasan, R.; Chandrasekaran, N.; Mukherjee, A. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat. Toxicol. 2019, 207, 208–216. [Google Scholar] [CrossRef]
- Kim, D.; Chae, Y.; An, Y.-J. Mixture Toxicity of Nickel and Microplastics with Different Functional Groups on Daphnia magna. Environ. Sci. Technol. 2017, 51, 12852–12858. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.J. Why we need GMO crops in agriculture. MO Med. 2014, 111, 492–507. [Google Scholar]
- Prado, J.R.; Segers, G.; Voelker, T.; Carson, D.; Dobert, R.; Phillips, J.; Cook, K.; Cornejo, C.; Monken, J.; Grapes, L.; et al. Genetically engineered crops: From idea to product. Annu. Rev. Plant Biol. 2014, 65, 769–790. [Google Scholar] [CrossRef] [Green Version]
- Baucom, R.S. Evolutionary and ecological insights from herbicide-resistant weeds: What have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019, 223, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [Green Version]
- Grandcoin, A.; Piel, S.; Baurès, E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017, 117, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.L.; Demetrio, P.M.; Agustina Etchegoyen, M.; Marino, D.J. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Sci. Total Environ. 2018, 645, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Battaglin, W.A.; Meyer, M.T.; Kuivila, K.M.; Dietze, J.E. Glyphosate and Its Degradation Product AMPA Occur Frequently and Widely in U.S. Soils, Surface Water, Groundwater, and Precipitation. J. Am. Water Resour. Assoc. 2014, 50, 275–290. [Google Scholar] [CrossRef]
- Bonansea, R.I.; Filippi, I.; Wunderlin, D.A.; Marino, D.J.G.; Amé, M.V. The Fate of Glyphosate and AMPA in a Freshwater Endorheic Basin: An Ecotoxicological Risk Assessment. Toxics 2017, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Castro Berman, M.; Marino, D.J.G.; Quiroga, M.V.; Zagarese, H. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. Chemosphere 2018, 200, 513–522. [Google Scholar] [CrossRef]
- Primost, J.E.; Marino, D.J.G.; Aparicio, V.C.; Costa, J.L.; Carriquiriborde, P. Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environ. Pollut. 2017, 229, 771–779. [Google Scholar] [CrossRef]
- Van Stempvoort, D.R.; Spoelstra, J.; Senger, N.D.; Brown, S.J.; Post, R.; Struger, J. Glyphosate residues in rural groundwater, Nottawasaga River Watershed, Ontario, Canada. Pest Manag. Sci. 2016, 72, 1862–1872. [Google Scholar] [CrossRef]
- Then, C. High Levels of Residues from Spraying with Glyphosate Found in Soybeans in Argentina; Testbiotech e.V. (Institute for Independent Impact Assessment in Biotechnology): München, Germany, 2013. [Google Scholar]
- Joint FAO/WHO Codex Alimentarius Commission. Codex Alimentarius: Soya Bean (Dry); World Health Organization: Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Tzaskos, D.; Marcovicz, C.; Dias, N.; Rosso, N. Development of sampling for quantification of glyphosate in natural waters. Cienc. Agrotecnologia 2012, 36, 399–405. [Google Scholar] [CrossRef] [Green Version]
- EC. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Comm. 1998, 330, 0032–0054. [Google Scholar]
- Kanissery, R.; Gairhe, B.; Kadyampakeni, D.; Batuman, O.; Alferez, F. Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants 2019, 8, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint FAO/WHO Meeting on Pesticide Residues; World Health Organization; FAO Panel of Experts on Pesticide Residues in Food and the Environment; WHO Core Assessment Group; International Programme on Chemical Safety. Pesticide Residues in Food: 1997: Toxicological and Environmental Evaluations/Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group, Lyon, 22 September–1 October 1997; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Bonnet, J.L.; Bonnemoy, F.; Dusser, M.; Bohatier, J. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ. Toxicol. 2007, 22, 78–91. [Google Scholar] [CrossRef]
- Mercurio, P.; Flores, F.; Mueller, J.F.; Carter, S.; Negri, A.P. Glyphosate persistence in seawater. Mar. Pollut. Bull. 2014, 85, 385–390. [Google Scholar] [CrossRef]
- Botten, N.; Wood, L.J.; Werner, J.R. Glyphosate remains in forest plant tissues for a decade or more. For. Ecol. Manag. 2021, 493, 119259. [Google Scholar] [CrossRef]
- Quaghebeur, D.; De Smet, B.; De Wulf, E.; Steurbaut, W. Pesticides in rainwater in Flanders, Belgium: Results from the monitoring program 1997–2001. J. Environ. Monit. 2004, 6, 182–190. [Google Scholar] [CrossRef]
- Silva, V.; Montanarella, L.; Jones, A.; Fernández-Ugalde, O.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef]
- Rampazzo Todorovic, G.; Rampazzo, N.; Mentler, A.; Blum, W.E.H.; Eder, A.; Strauss, P. Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils. Int. Agrophys. 2014, 28, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Rendon-von Osten, J.; Dzul-Caamal, R. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef]
- Yang, X.; Wang, F.; Bento, C.P.M.; Xue, S.; Gai, L.; van Dam, R.; Mol, H.; Ritsema, C.J.; Geissen, V. Short-term transport of glyphosate with erosion in Chinese loess soil—A flume experiment. Sci. Total Environ. 2015, 512–513, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Moore, J. Controlling Aquatic Weeds in Farm Dams in Western Australia. Available online: https://agric.wa.gov.au/n/1501 (accessed on 20 June 2021).
- Glozier, N.E.; Struger, J.; Cessna, A.J.; Gledhill, M.; Rondeau, M.; Ernst, W.R.; Sekela, M.A.; Cagampan, S.J.; Sverko, E.; Murphy, C.; et al. Occurrence of glyphosate and acidic herbicides in select urban rivers and streams in Canada, 2007. Environ. Sci. Pollut. Res. Int. 2012, 19, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Comai, L.; Sen, L.C.; Stalker, D.M. An altered aroA gene product confers resistance to the herbicide glyphosate. Science 1983, 221, 370–371. [Google Scholar] [CrossRef] [PubMed]
- OECD. Section 2—General Information Concerning the Genes and their Enzymes that Confer Tolerance to Glyphosate Herbicide. In Safety Assessment of Transgenic Organisms; OECD, Ed.; OECD Consensus Documents: Paris, France, 2006; Volume 1, pp. 351–359. [Google Scholar]
- Dost, F.N. Toxicology and Potential Health Risk of Chemicals that May Be Encountered by Workers Using Forest Vegetation Management Options: Part IV, Risk to Workers Using Glyphosate Formulations. Available online: http://www.llbc.leg.bc.ca/public/pubdocs/bcdocs/363001/6_dost_glyphosate.pdf (accessed on 20 June 2021).
- Duke, S.O.; Lydon, J.; Koskinen, W.C.; Moorman, T.B.; Chaney, R.L.; Hammerschmidt, R. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J. Agric. Food. Chem. 2012, 60, 10375–10397. [Google Scholar] [CrossRef]
- Gutierrez, M.F.; Battauz, Y.; Caisso, B. Disruption of the hatching dynamics of zooplankton egg banks due to glyphosate application. Chemosphere 2017, 171, 644–653. [Google Scholar] [CrossRef]
- Piccini, C.; Fazi, S.; Pérez, G.; Batani, G.; Martínez de la Escalera, G.; Sotelo-Silveira, J.R. Resistance to degradation and effect of the herbicide glyphosate on the bacterioplankton community of a large river system dominated by agricultural activities. Mar. Freshw. Res. 2020, 71, 1026–1032. [Google Scholar] [CrossRef]
- Hong, Y.; Yang, X.; Huang, Y.; Yan, G.; Cheng, Y. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere 2018, 210, 896–906. [Google Scholar] [CrossRef]
- Matozzo, V.; Munari, M.; Masiero, L.; Finos, L.; Marin, M.G. Ecotoxicological hazard of a mixture of glyphosate and aminomethylphosphonic acid to the mussel Mytilus galloprovincialis (Lamarck 1819). Sci. Rep. 2019, 9, 14302. [Google Scholar] [CrossRef]
- Mensah, P.; Muller, W.; Palmer, C. Acetylcholinesterase activity in the freshwater shrimp Caridina nilotica as a biomarker of Roundup (R) herbicide pollution of freshwater systems in South Africa. Water Sci. Technol. 2012, 66, 402–408. [Google Scholar] [CrossRef]
- Rossi, A.S.; Fantón, N.; Michlig, M.P.; Repetti, M.R.; Cazenave, J. Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecol. Indic. 2020, 113, 106186. [Google Scholar] [CrossRef]
- Contardo-Jara, V.; Klingelmann, E.; Wiegand, C. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ. Pollut. 2009, 157, 57–63. [Google Scholar] [CrossRef] [PubMed]
- de Melo, M.S.; Nazari, E.M.; Müller, Y.M.R.; Gismondi, E. Modulation of antioxidant gene expressions by Roundup® exposure in the decapod Macrobrachium potiuna. Ecotoxicol. Environ. Saf. 2020, 190, 110086. [Google Scholar] [CrossRef] [PubMed]
- Fantón, N.; Bacchetta, C.; Rossi, A.; Gutierrez, M.F. Effects of a glyphosate-based herbicide on the development and biochemical biomarkers of the freshwater copepod Notodiaptomus carteri (Lowndes, 1934). Ecotoxicol. Environ. Saf. 2020, 196, 110501. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-H.; Ruan, L.-Y.; Zhou, J.-W.; Fu, Y.-H.; Jiang, L.; Zhao, H.; Wang, J.-S. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. Aquat. Toxicol. 2017, 188, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Mensah, P.; Palmer, C.; Muller, W. Lipid peroxidation in the freshwater shrimp Caridina nilotica as a biomarker of Roundup (R) herbicide pollution of freshwater systems in South Africa. Water Sci. Technol. 2012, 65, 1660–1666. [Google Scholar] [CrossRef]
- Topal, A.; Atamanalp, M.; Uçar, A.; Oruç, E.; Kocaman, E.M.; Sulukan, E.; Akdemir, F.; Beydemir, Ş.; Kılınç, N.; Erdoğan, O.; et al. Effects of glyphosate on juvenile rainbow trout (Oncorhynchus mykiss): Transcriptional and enzymatic analyses of antioxidant defence system, histopathological liver damage and swimming performance. Ecotoxicol. Environ. Saf. 2015, 111, 206–214. [Google Scholar] [CrossRef]
- Ma, J.; Li, X. Alteration in the cytokine levels and histopathological damage in common carp induced by glyphosate. Chemosphere 2015, 128, 293–298. [Google Scholar] [CrossRef]
- Riaño, C.; Ortiz-Ruiz, M.; Pinto-Sánchez, N.R.; Gómez-Ramírez, E. Effect of glyphosate (Roundup Active®) on liver of tadpoles of the colombian endemic frog Dendropsophus molitor (amphibia: Anura). Chemosphere 2020, 250, 126287. [Google Scholar] [CrossRef]
- Reno, U.; Doyle, S.R.; Momo, F.R.; Regaldo, L.; Gagneten, A.M. Effects of glyphosate formulations on the population dynamics of two freshwater cladoceran species. Ecotoxicology 2018, 27, 784–793. [Google Scholar] [CrossRef]
- Uren Webster, T.M.; Laing, L.V.; Florance, H.; Santos, E.M. Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio). Environ. Sci. Technol. 2014, 48, 1271–1279. [Google Scholar] [CrossRef]
- Wang, X.; Chang, L.; Zhao, T.; Liu, L.; Zhang, M.; Li, C.; Xie, F.; Jiang, J.; Zhu, W. Metabolic switch in energy metabolism mediates the sublethal effects induced by glyphosate-based herbicide on tadpoles of a farmland frog Microhyla fissipes. Ecotoxicol. Environ. Saf. 2019, 186, 109794. [Google Scholar] [CrossRef] [PubMed]
- Mensah, P.K.; Muller, W.J.; Palmer, C.G. Acute toxicity of Roundup® herbicide to three life stages of the freshwater shrimp Caridina nilotica (Decapoda: Atyidae). Phys. Chem. Earth. 2011, 36, 905–909. [Google Scholar] [CrossRef]
- Mikó, Z.; Ujszegi, J.; Gál, Z.; Hettyey, A. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles. Ecotoxicol. Environ. Saf. 2017, 140, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.O.; Truter, J.C.; van Wyk, J.H. Mortality, teratogenicity and growth inhibition of three glyphosate formulations using Frog Embryo Teratogenesis Assay-Xenopus. J. Appl. Toxicol. 2019, 39, 1257–1266. [Google Scholar] [CrossRef]
- Daam, M.A.; Moutinho, M.F.; Espíndola, E.L.G.; Schiesari, L. Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and metribuzin to tropical frog larvae. Ecotoxicology 2019, 28, 707–715. [Google Scholar] [CrossRef]
- Gustinasari, K.; Sługocki, Ł.; Czerniawski, R.; Pandebesie, E.S.; Hermana, J. Acute toxicity and morphology alterations of glyphosate-based herbicides to Daphnia magna and Cyclops vicinus. Toxicol. Res. 2021, 37, 197–207. [Google Scholar] [CrossRef]
- Ikeogu, C.F.; Ikpeze, O.O.; Omobowale, T.O.; Olufemi, B.E. Effect of Ascorbic Acid on Glyphosate-Induced Residues in Muscles of Juvenile Catfish (Clarias gariepinus). Asian J. Fish. Aquat. Res. 2020, 10, 40–49. [Google Scholar] [CrossRef]
- Mensah, P.; Muller, W.; Palmer, C. Using growth measures in the freshwater shrimp Caridina nilotica as biomarkers of Roundup (R) pollution of South African freshwater systems. Phys. Chem. Earth 2012, 50–52, 262–268. [Google Scholar] [CrossRef]
- Gasnier, C.; Dumont, C.; Benachour, N.; Clair, E.; Chagnon, M.-C.; Séralini, G.-E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 2009, 262, 184–191. [Google Scholar] [CrossRef]
- Richard, S.; Moslemi, S.; Sipahutar, H.; Benachour, N.; Seralini, G.-E. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ. Health Perspect. 2005, 113, 716–720. [Google Scholar] [CrossRef] [Green Version]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Al-Ahmad, A.J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 2019, 304, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.-A.; Rodríguez, J.-L.; Lopez-Torres, B.; Martínez, M.; Martínez-Larrañaga, M.-R.; Maximiliano, J.-E.; Anadón, A.; Ares, I. Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ. Int. 2020, 135, 105414. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Tessema, R.A.; Budnik, L.T.; Ádám, B. Comparative cyto- and genotoxicity assessment of glyphosate and glyphosate-based herbicides in human peripheral white blood cells. Environ. Res. 2019, 179, 108851. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Some Organophosphate Insecticides and Herbicides; International Agency for Research on Cancer: Lyon, France, 2017; p. 398. [Google Scholar]
- Chaufan, G.; Coalova, I.; Molina, M.d.C.R.d. Glyphosate Commercial Formulation Causes Cytotoxicity, Oxidative Effects, and Apoptosis on Human Cells:Differences With its Active Ingredient. Int. J. Toxicol. 2014, 33, 29–38. [Google Scholar] [CrossRef]
- Mottier, A.; Séguin, A.; Devos, A.; Pabic, C.L.; Voiseux, C.; Lebel, J.M.; Serpentini, A.; Fievet, B.; Costil, K. Effects of subchronic exposure to glyphosate in juvenile oysters (Crassostrea gigas): From molecular to individual levels. Mar. Pollut. Bull. 2015, 95, 665–677. [Google Scholar] [CrossRef]
- Iummato, M.M.; Sabatini, S.E.; Cacciatore, L.C.; Cochón, A.C.; Cataldo, D.; de Molina, M.d.C.R.; Juárez, Á.B. Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Ecotoxicol. Environ. Saf. 2018, 163, 69–75. [Google Scholar] [CrossRef]
- Milan, M.; Dalla Rovere, G.; Smits, M.; Ferraresso, S.; Pastore, P.; Marin, M.G.; Bogialli, S.; Patarnello, T.; Bargelloni, L.; Matozzo, V. Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: Transcriptional responses in the mussel Mytilus galloprovincialis. Environ. Pollut. 2018, 237, 442–451. [Google Scholar] [CrossRef]
- Iori, S.; Rovere, G.D.; Ezzat, L.; Smits, M.; Ferraresso, S.S.; Babbucci, M.; Marin, M.G.; Masiero, L.; Fabrello, J.; Garro, E.; et al. The effects of glyphosate and AMPA on the mediterranean mussel Mytilus galloprovincialis and its microbiota. Environ. Res. 2020, 182, 108984. [Google Scholar] [CrossRef]
- de Melo, M.S.; dos Santos, T.P.G.; Jaramillo, M.; Nezzi, L.; Rauh Muller, Y.M.; Nazari, E.M. Histopathological and ultrastructural indices for the assessment of glyphosate-based herbicide cytotoxicity in decapod crustacean hepatopancreas. Aquat. Toxicol. 2019, 210, 207–214. [Google Scholar] [CrossRef]
- Fletcher, R. Global Shrimp Production Sees Significant Growth in 2021. Available online: https://thefishsite.com/articles/global-shrimp-production-sees-significant-growth-in-2021-gorjan-nikolik-rabobank (accessed on 31 March 2022).
- Ranjan, A.; Boyd, C.E. Appraising Pond Liners for Shrimp Culture. Available online: https://www.aquaculturealliance.org/advocate/appraising-pond-liners-shrimp-culture/ (accessed on 20 June 2021).
- Pruder, G.D.; Duerr, E.O.; Walsh, W.A.; Lawrence, A.L.; Bray, W.A. The technical feasibility of pond liners for rearing Pacific white shrimp (Penaeus vannamei) in terms of survival, growth, water exchange rate and effluent water quality. Aquac. Eng. 1992, 11, 183–201. [Google Scholar] [CrossRef]
- Gouin, T.; Becker, R.A.; Collot, A.-G.; Davis, J.W.; Howard, B.; Inawaka, K.; Lampi, M.; Ramon, B.S.; Shi, J.; Hopp, P.W. Toward the Development and Application of an Environmental Risk Assessment Framework for Microplastic. Environ. Toxicol. Chem. 2019, 38, 2087–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curren, E.; Leaw, C.P.; Lim, P.T.; Leong, S.C.Y. Evidence of Marine Microplastics in Commercially Harvested Seafood. Front. Bioeng. Biotechnol. 2020, 8, 1390. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.K. The Life History and Bionomics of an Indian Penaeid Prawn Metapenaeus dobsoni, Miers. Available online: https://www.fao.org/apfic/meeting-reports/detail-events/en/c/420315/ (accessed on 6 January 2022).
- Abby-Kalio, N.J. Feeding and Predation in Penaeid Shrimps of the Bony and New Calabar Estuaries of the Niger Delta; 8th Fisheries Society of Nigeria: Akure, Nigeria, 1990. [Google Scholar]
- Corteel, M.; Lima, J.; Wille, M.; Alday-Sanz, V.; Pensaert, M.; Sorgeloos, P. Molt stage and cuticle damage influence White Spot Syndrome Virus immersion infection in penaeid shrimp. Vet. Microbiol. 2009, 137, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Thuong, K.; Van Tuan, V.; Li, W.; Sorgeloos, P.; Bossier, P.; Nauwynck, H. Effects of acute change in salinity and moulting on the infection of white leg shrimp (Penaeus vannamei) with white spot syndrome virus upon immersion challenge. J. Fish Dis. 2016, 39, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Kungvankij, P.; Chua, T.E. Shrimp Culture: Pond Design, Operation and Management. Available online: https://www.fao.org/3/ac210e/AC210E00.htm#TOC (accessed on 20 June 2021).
- Zocchi, M.; Sommaruga, R. Microplastics modify the toxicity of glyphosate on Daphnia magna. Sci. Total Environ. 2019, 697, 134194. [Google Scholar] [CrossRef]
- Lajmanovich, R.C.; Attademo, A.M.; Lener, G.; Cuzziol Boccioni, A.P.; Peltzer, P.M.; Martinuzzi, C.S.; Demonte, L.D.; Repetti, M.R. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. Sci. Total Environ. 2022, 804, 150177. [Google Scholar] [CrossRef]
- Chen, J.; Rao, C.; Yuan, R.; Sun, D.; Guo, S.; Li, L.; Yang, S.; Qian, D.; Lu, R.; Cao, X. Long-term exposure to polyethylene microplastics and glyphosate interferes with the behavior, intestinal microbial homeostasis, and metabolites of the common carp (Cyprinus carpio L.). Sci. Total Environ. 2021, 814, 152681. [Google Scholar] [CrossRef]
Organism | Formulation | Duration | Concentration | Endpoints Studied | Bioaccumulation | Effect | References | |
---|---|---|---|---|---|---|---|---|
Producers | ||||||||
Bacterioplankton | Bacterioplankton community | 96% pure 2-13C-glyphosate | 6 days | EC: 100 µg/L | CC | Bacterial richness and diversity ↓ | [158] | |
Zooplankton | Daphnia magna | Sumin Atut 360 SL | 12, 24, 48 h | LC50-12 h: 76.67 mg/L | GM | Mortality ↑, head width ↓ | [178] | |
LC50-24 h: 36.2 mg/L | ||||||||
LC50-48 h: 21.34 mg/L | ||||||||
Cyclops vicinus | LC50-12 h: 207.89 mg/L | Mortality ↑, body length ↓ | ||||||
LC50-24 h: 159.8 mg/L | ||||||||
LC50-48 h: 92.93 mg/L | ||||||||
Zooplankton | D. magna | Eskoba® | 15 days | LC50-48 h: 29.48 mg a.e./L | GM, CC, RT | Mortality ↑, growth and fecundity ↓ | [171] | |
Panzer Gold® | LC50-48 h: 2.12 mg a.e./L | |||||||
Roundup® Ultramax | LC50-48 h: 11.68 mg a.e./L | |||||||
Sulfosato Touchdown® | LC50-48 h: 1.62 mg a.e./L | |||||||
Ceriodaphnia dubia | Eskoba® | LC50-48 h: 14.49 mg a.e./L | ||||||
Panzer Gold® | LC50-48 h: 0.54 mg a.e./L | |||||||
Roundup® Ultramax | LC50-48 h: 4.84 mg a.e./L | |||||||
Sulfosato Touchdown® | LC50-48 h: 0.31 mg a.e./L | |||||||
Zooplankton | Zooplankton community | Sulfosato Touchdown® | 30 days | EC: 2.7 mg/L | CC, RT | Diversity ↓, time of the first hatching ↕, time of the maximum hatching ↕, frequency of the hatchings ↕ | [157] | |
Zooplankton | Notodiaptomus carteri | Sulfosato Touchdown® | 10 days | EC: 0.81 mg/L | MT, OS | Superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities ↑ | [165] | |
30 days | EC: 0.38 mg/L | GM | Growth and development ↓ | |||||
Consumers | ||||||||
Worm | Lumbriculus variegatus | Glyphosate analytical standard | 4 days | EC: 0.05 mg/L | OS | + | SOD and biotransformation enzyme soluble GST ↑ | [163] |
Roundup Ultra® | EC: 0.05 mg/L | |||||||
Mussel | Limnoperna fortunei | Glifosato Atanor® | 28 days | EC: 6 mg/L active principle and 2.5% surfactant Impacto® | OS, MT, NT | GST and alkaline phosphatase activities ↑, carboxylesterase activity ↓ | [190] | |
Mussel | Mytilus galloprovincialis | Glyphosate analytical standard | 21 days | EC: 10 µg/L | GE | Energy metabolism and Ca2+ homeostasis ↕, cell signaling ↕, endoplasmic reticulum stress response ↕ | [191] | |
Mussel | M. galloprovincialis | Glyphosate and AMPA analytical standards | 7 and 21 days | EC: 100 µg/L | GE, MM | Physiological homeostasis and dysbiosis of gut microbiota ↕ | [192] | |
Mussel | M. galloprovincialis | Glyphosate and AMPA analytical standards | 7, 14 and 21 days | EC: 100 µg/L | OS, NT, HT | Hemocyte parameters ↕, antioxidant enzyme activity ↕, acetylcholinesterase (AChE) activity ↓ | [160] | |
Shrimp | Caridina nilotica | Roundup® | 48 and 96 h | LC50-48 h (Neonate): 4.5 mg/L a.e. | GM, BC | Mortality ↑, behavior ↕ | [174] | |
LC50-48 h (Juvenile): 9.4 mg/L a.e. | ||||||||
LC50-48 h (Adult): 37.1 mg/L a.e. | ||||||||
LC50-96 h (Neonate): 2.5 mg/L a.e. | ||||||||
LC50-96 h (Juvenile): 7.0 mg/L a.e. | ||||||||
LC50-96 h (Adult): 25.3 mg/L a.e. | ||||||||
Shrimp | C. nilotica | Roundup® | 25 days | EC: 2.2 mg/L | GM | Growth rate and feed utilization ↓, molting frequency ↑ | [180] | |
Shrimp | C. nilotica | Roundup® | 96 h and 21 days | EC-96 h: 4.3 mg/L | NT | AChE activity ↓ | [161] | |
EC-21 d: 2.2 mg/L | ||||||||
Shrimp | C. nilotica | Roundup® | 96 h and 21 days | EC-96 h: 4.3 mg/L | OS | Lipid peroxidation (LPO) ↑ | [167] | |
EC-21 d: 2.2 mg/L | ||||||||
Shrimp | Macrobrachium nipponensis | Roundup® | 48 and 96 h | LC50-48 h: 57.684 mg/L | GM, HT, OS, NT, GT | Mortality ↑, total hemocyte count ↓, SOD and catalase (CAT) levels ↓, total antioxidant capacity ↓, malondialdehyde (MDA) ↑, hydrogen peroxide ↑, protein carbonyl ↑, AChE activity ↓, MN frequency of hemocyte ↑, comet ratio and %DNA in the tails ↑ | [159] | |
LC50-96 h: 11.237 mg/L | ||||||||
Prawn | Macrobrachium potiuna | Roundup WG® | 7 and 14 days | EC: 0.0065 mg/L | CT | Altered ultrastructure of hepatopancreas and impaired R cells | [193] | |
Prawn | M. potiuna | Roundup WG® | 7 and 14 days | EC: 0.0065 mg/L | OS, GE | Antioxidant gene expression in hepatopancreas ↕ | [164] | |
Fish | Clarias gariepinus | Delsate® | 48 h and 91 days | LC50-48 h: 75 mg/L | GM | + | Mortality and residues in muscles ↑ | [179] |
EC-91d: 5, 10, 15 mg/L | ||||||||
Fish | Markiana nigripinnis | Mixture of pesticides including glyphosate (Roundup®) | 21 days | Field pesticide application | OS, NT | + | Biometric parameters and organismic indices ↕, antioxidation enzyme activities ↕, oxidative damage, AChE activity ↓ | [162] |
Astyanax lacustris | ||||||||
Fish | Danio rerio | Roundup® GC liquid glyphosate concentrate | 21 days | EC: 10 mg/L a.e. | RT | Embryo mortality ↑, premature hatching ↑, reproductive gene expression ↕, egg ↓ | [172] | |
Glyphosate analytical standard | EC: 10 mg/L | |||||||
Fish | Oncorhynchus mykiss | Commercial formulation | 6, 12, 24, 48, 96 h | EC: 2.5 mg/L | HP, BC, OS | Glutathione peroxidase and CAT activities ↑, antioxidant gene expression ↕, swimming performance ↓, histopathological liver damage | [168] | |
21 days | EC: 5 mg/L | |||||||
Fish | Carassius auratis | Nongteshi® | 90 days | EC: 0.2 mmol/L | HT, HP, OS, MT | Blood biochemistry ↕, renal tissue ↓, oxidative stress mechanisms ↕, metabolisms ↕ | [166] | |
Fish | Cyprinus carpio L. | Commercial formulation | 168 h | LC50-96 h: 520.77 mg/L | IT, HP | Contents of cytokines ↕, histopathological damage | [169] | |
Frog | Rana dalmatina | Glyphogan® | 21 days | EC: 2 mg a.e./L | BC | Anti-predator behaviors ↕ | [175] | |
Frog | Dendropsophus molitor | Roundup Active® | 30 days | EC: 325 µg a.e./L | HP | Hepatic tissue injuries | [170] | |
Frog | Physalaemus cuvieri | Glyphosate analytical standard | 96 h | LC50-96 h: 115 mg a.e./L | GM | Mortality ↑ | [177] | |
Hypsiboas pardalis | LC50-96 h: 106 mg a.e./L | |||||||
Frog | Xenopus laevis | Roundup® | 96 h | LC50-96 h: 1.05 mg a.e/L | GM | Mortality ↑, malformation ↑, growth ↓ | [176] | |
Kilo Max® | LC50-96 h: 207 mg a.e./L | |||||||
Enviro Glyphosate® | LC50-96 h: 466 mg a.e./L | |||||||
Frog | Microhyla fissipes | KISSUN® | 10 days | LC50-10 d: 77.5 mg/L | GM, BC, MT | Mortality ↑, growth ↓, swimming behavior ↕, metabolism ↕ | [173] | |
Human | Homo sapiens | Roundup® | 24 h | EC: 2% | ET | +/- | Aromatase activity and mRNA levels ↕ | [182] |
Glyphosate analytical standard | EC: 2% | |||||||
Human | H. sapiens | Glyphosate and AMPA analytical standards | 24 h | EC: 100 µM | NT | Neurological damage, glucose metabolism ↕ | [184] | |
Human | H. sapiens | Glyphosate analytical standards | 24 h | EC: 0.5 ppm | ET, CT | Disruption of the androgen receptor and estrogen receptors, aromatase transcription and activity ↕, DNA damages | [181] | |
Roundup Express® | ||||||||
Bioforce® | ||||||||
Grands Travaux® | ||||||||
Grands Travaux plus® | ||||||||
Human | H. sapiens | Glyphosate analytical standards | 6 and 24 h | EC: 10-12 M | ET, GE | Human hormone-dependent breast cancer ↑, expression of the estrogen receptors α and β ↕ | [183] | |
Human | H. sapiens | Glyphosate analytical standards | 4 h | Exposure concentration: 1000 µM | CT, GT | No significant cytotoxicity and genotoxicity | [186] | |
Roundup Mega® | EC: 250 µM | Cell death and DNA damage | ||||||
Fozat 480® | EC: 500 µM | |||||||
Glyfos® | EC: 250 µM | |||||||
Human | H. sapiens | Glyphosate analytical standards | 48 h | EC: 5 mM | NT, GE, OS | MDA levels ↑, nitric oxide and reactive oxygen species production ↑, caspase 3/7 activity ↑, neurological and apoptotic gene expressions ↕ | [185] | |
AMPA analytical standards | EC: 10 mM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thammatorn, W.; Palić, D. Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp. Appl. Sci. 2022, 12, 5135. https://doi.org/10.3390/app12105135
Thammatorn W, Palić D. Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp. Applied Sciences. 2022; 12(10):5135. https://doi.org/10.3390/app12105135
Chicago/Turabian StyleThammatorn, Worrayanee, and Dušan Palić. 2022. "Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp" Applied Sciences 12, no. 10: 5135. https://doi.org/10.3390/app12105135
APA StyleThammatorn, W., & Palić, D. (2022). Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp. Applied Sciences, 12(10), 5135. https://doi.org/10.3390/app12105135