A Study on Comparison of Temperature Distribution between Aluminum and GFRP Mold under Carbon Spar-Cap Manufacturing Process
Abstract
:1. Introduction
2. Methodology
2.1. Geometrical Modeling
2.2. Mathematical Formulation
2.3. Material Properties and Boundary Conditions
2.4. Grid Independence Verification
2.5. Methodology for Establishing Obtained Formulas
3. Results
3.1. Reference Model’s Spar-Cap Top Face Temperature Results of Steady State Analysis
3.2. Case 7 Model’s Spar-Cap Top Surface Temperature Results of Steady State Analysis
3.3. Comparison of Steady State Analysis Temperature Distributions between Contact Interfaces of Materials
3.4. Spar-Cap Top Surface Temperature Results of Transient State Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
, | Area (view factor method) | [ ] |
Spar-cap surface area | [ ] | |
Gradient of the obtained formula | ||
Specific heat | [ ] | |
Air specific heat | ||
Constant of the obtained formula | ||
Surface heat generation | [ ] | |
View factor (view factor method) | ||
Heat transfer coefficient | [ ] | |
Heat transfer coefficient of air | [ ] | |
Thermal conductivity | [ ] | |
Air thermal conductivity | [ ] | |
Resin thermal conductivity | [ ] | |
Section in the geometrical model | ||
Convection heat transfer | [ ] | |
Local spar-cap top surface mean temperature | ||
Air temperature | ||
Spar-cap top surface mean temperature | ||
Heat panel mean temperature | [ ] | |
Desired spar-cap top surface temperature | [ ] | |
Improved temperature of the heat panel | ||
Thickness of spar-cap section | ||
Z direction thickness of simplified model | [mm] | |
Air thermal diffusion coefficient | [ ] | |
Thickness of the epoxy coated on the spar-cap surface | [mm] | |
, | Emissivity (view factor method) | |
Stefan–Boltzmann constant | [ ] | |
Viscosity coefficient | [ ] | |
Air viscosity coefficient | [ ] | |
Density | [ ] |
References
- Cox, K.; Echtermeyer, A. Structural Design and Analysis of a 10MW Wind Turbine Blade. Energy Procedia 2012, 24, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Beukers, A.; van Hinte, E. Designing Lightness; NAI010 Publishers: Rotterdam, The Netherlands, 2020. [Google Scholar]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J.A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019, 198, 109542. [Google Scholar] [CrossRef]
- Carbon Fiber vs. Fiberglass: A Comparison between the Two Materials Which Material Is Superior? 2017. Available online: https://infogr.am/carbon-fiber-vs-fiberglass (accessed on 13 January 2022).
- Lee, E.B.; Lee, K.C.; Naughton, B.T.; Norris, R.E.; Sujit, D.; Lee, D.; Miller, D. Optimized Carbon Fiber Composites in Wind Turbine Blade Design; Sandia Report, SAND2019-14173; Sandia National Lab.: Albuquerque, NM, USA, 2019. [Google Scholar]
- Brøndsted, P.; Nijssen, R. (Eds.) Advances in Wind Turbine Blade Design and Materials; Woodhead Publishing: Oxford, UK, 2013. [Google Scholar]
- Thomsen, O.T. Sandwich Materials for Wind Turbine Blades—Present and Future. J. Sandw. Struct. Mater. 2009, 11, 7–26. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F. Materials for Wind Turbine Blades: An Overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grande, J.A. Wind Power Blades Energize Composites Manufacturing. Plast. Technol. 2008, 54, 68–75. [Google Scholar]
- Khan, Z.I.; Arsad, A.; Mohamad, Z.; Habib, U.; Zaini, M.A.A. Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Mater. Today Proc. 2020, 39, 956–958. [Google Scholar] [CrossRef]
- Vogler, T.; Kyriakides, S. On the initiation and growth of kink bands in fiber composites: Part I. experiments. Int. J. Solids Struct. 2001, 38, 2639–2651. [Google Scholar] [CrossRef]
- Hernández, S.; Sket, F.; González, C.; Llorca, J. Optimization of curing cycle in carbon fiber-reinforced laminates: Void distribution and mechanical properties. Compos. Sci. Technol. 2013, 85, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Liebig, W.; Leopold, C.; Schulte, K. Photoelastic study of stresses in the vicinity of a unique void in a fibre-reinforced model composite under compression. Compos. Sci. Technol. 2013, 84, 72–77. [Google Scholar] [CrossRef]
- Hapke, J.; Gehrig, F.; Huber, N.; Schulte, K.; Lilleodden, E. Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis. Compos. Sci. Technol. 2011, 71, 1242–1249. [Google Scholar] [CrossRef] [Green Version]
- Olivier, P.; Cottu, J.; Ferret, B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites 1995, 26, 509–515. [Google Scholar] [CrossRef]
- Huang, H.; Talreja, R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 2005, 65, 1964–1981. [Google Scholar]
- Lange, J.; Toll, S.; Manson, J.-A.E.; Hult, A. Residual stress build-up in thermoset films cured above their ultimate glass transition temperature. Polymer 1995, 36, 3135–3141. [Google Scholar] [CrossRef]
- Wineman, A.; Heinrich, C.; Nguyen, N.; Waas, A. A general network theory for the development of curing stresses in an epoxy/fiber composite. Acta Mech. 2016, 227, 3585–3601. [Google Scholar] [CrossRef]
- Umarfarooq, M.A.; Gouda, P.S.; Banapurmath, N.R.; Edacherian, A. Impact of Process Induced Residual Stresses on Interlaminar Fracture Toughness in Carbon Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105652. [Google Scholar] [CrossRef]
- Marsh, G. ‘De-autoclaving’ prepreg processing. Reinf. Plast. 2012, 56, 20–25. [Google Scholar] [CrossRef]
- Hsiao, K.-T.; Gangireddy, S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2008, 39, 834–842. [Google Scholar] [CrossRef]
- Madhusudana, C.V. Thermal Contact Conductance; Mechanical Engineering Series; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Davis, P.L.; Rinehimer, A.T.; Uddin, M. A comparison of RANS-based turbulence modeling for flow over a wall-mounted square cylinder. In Proceedings of the 20th Annual Conference of the CFD Society of Canada, Canmore, AB, Canada, 9–11 May 2012. [Google Scholar]
- Li, X.; Wang, J.; Li, S.; Ding, A. Cure-induced temperature gradient in laminated composite plate: Numerical simulation and experimental measurement. Compos. Struct. 2020, 253, 112822. [Google Scholar] [CrossRef]
- Keller, T.; Zhou, A.; Tracy, C.; Hugi, E.; Schnewlin, P. Experimental study on the concept of liquid cooling for improving fire resistance of FRP structures for construction. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1569–1580. [Google Scholar] [CrossRef]
- Keller, T.; Tracy, C.; Huge, E. Fire endurance of loaded and liquid-cooled GFRPslabs for construction. Compos. A Appl. Sci. Manufact. 2006, 37, 1055–1067. [Google Scholar] [CrossRef]
Thermophysical Property | Value | |
---|---|---|
Vf | 0.61 | |
(kg/m3) | f | 1810 |
r | 1200 | |
C (J/kg·K) | Cf | 931 + 3.47 T |
Cr | 750 + 2.05 T | |
k (W/m·K) | kf1 | 2.4 + 5.07 × 10−3 T |
kf2 | 7.69 + 1.56 × 10−2 T | |
kr | 0.148 + 3.43 × 10−4 T |
Material | Density (kg/m3) | Specific Heat (J/kg) | Conductivity (W/m) | |
---|---|---|---|---|
Mold | Aluminum | 2688.7 | 898.7 | 236.72 |
GFRP | 1870 | 1246.08 | 0.7166 * | |
0.4473 ** | ||||
Spar-Cap | CFRP | 1572.1 | 2.8651 T + 1636.5 | 0.0031 T + 2.2755 * |
0.0011 T + 0.8052 ** | ||||
Heat panel | Copper | 8889.8 | 384.6 | 398.84 |
Analysis Time (s) | Element Number | |
---|---|---|
Case A | 4184 | 70,925 |
Case B | 13,006 | 271,010 |
Case C | 61,401 | 353,936 |
Case 6 | 68,487 | 2,677,835 |
Case D | 294,960 | 7,682,326 |
Mold | Section Number | Obtained Formula | Target Temperature of Spar-Cap Top Surface | Improved Heat Panel Temperature |
---|---|---|---|---|
Aluminum | 1 | 80 °C | 87.2942 °C | |
2 | 80 °C | 88.4312 °C | ||
3 | 80 °C | 86.5615 °C | ||
4 | 80 °C | 85.0034 °C | ||
5 | 80 °C | 83.4814 °C | ||
GFRP | 1 | 80 °C | 91.7463 °C | |
2 | 80 °C | 92.5586 °C | ||
3 | 80 °C | 90.4510 °C | ||
4 | 80 °C | 88.9393 °C | ||
5 | 80 °C | 87.7722 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.-H.; Lee, J.-H.; Lee, S.-I. A Study on Comparison of Temperature Distribution between Aluminum and GFRP Mold under Carbon Spar-Cap Manufacturing Process. Appl. Sci. 2022, 12, 5220. https://doi.org/10.3390/app12105220
Yoon J-H, Lee J-H, Lee S-I. A Study on Comparison of Temperature Distribution between Aluminum and GFRP Mold under Carbon Spar-Cap Manufacturing Process. Applied Sciences. 2022; 12(10):5220. https://doi.org/10.3390/app12105220
Chicago/Turabian StyleYoon, Joong-Hoon, Jang-Ho Lee, and Sang-Il Lee. 2022. "A Study on Comparison of Temperature Distribution between Aluminum and GFRP Mold under Carbon Spar-Cap Manufacturing Process" Applied Sciences 12, no. 10: 5220. https://doi.org/10.3390/app12105220
APA StyleYoon, J.-H., Lee, J.-H., & Lee, S.-I. (2022). A Study on Comparison of Temperature Distribution between Aluminum and GFRP Mold under Carbon Spar-Cap Manufacturing Process. Applied Sciences, 12(10), 5220. https://doi.org/10.3390/app12105220