Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels
Abstract
:1. Introduction
2. Description of the Control Object
3. Synthesis of the Neural Control Algorithm
4. Numerical Tests of the Operation of the Algorithm
- (a)
- The maximum value of the rotation angle error of the mecanum wheel:
- (b)
- The maximum value of the angular velocity error of the mecanum wheel:
- (c)
- Root-mean-square error (RMSE) of tracking the desired rotation angle:
- (d)
- RMSE of tracking the desired angular velocity:
- (e)
- The maximum distance between the desired and implemented position of the characteristic point S of the robot on the xy plane:
- (f)
- RMSE of the distance between the desired and implemented position of the robot’s characteristic point S:
- (g)
- The distance between the desired and implemented point S position after the end of the motion:
4.1. Simulation Test 1 (PD Controller)
4.2. Simulation Test 2 (Intelligent Control)
5. Verification Tests of the Control Algorithm
5.1. Verification Test 1 (PD Controller)
5.2. Verification Test 2 (Intelligent Control)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd Mutalib, M.A.; Azlan, N.Z. Prototype development of mecanum wheels mobile robot: A review. Appl. Res. Smart Technol. 2020, 1, 71–82. [Google Scholar] [CrossRef]
- Velagic, J.; Osmic, N.; Lacevic, B. Neural network controller for mobile robot motion control. World Acad. Sci. Eng. Technol. 2008, 47, 193–198. [Google Scholar]
- Watanabe, K.; Tang, J.; Nakamura, M.; Koga, S.; Fukuda, T. A fuzzy-Gaussian neural network and its application to mobile robot control. IEEE Trans. Control Syst. Technol. 1996, 4, 193–199. [Google Scholar] [CrossRef]
- Vo, A.T.; Kang, H.J. An adaptive neural non-singular fast-terminal sliding-mode control for industrial robotic manipulators. Appl. Sci. 2018, 8, 2562. [Google Scholar] [CrossRef] [Green Version]
- Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-robot path planning method using reinforcement learning. Appl. Sci. 2019, 9, 3057. [Google Scholar] [CrossRef] [Green Version]
- Szuster, M. Dual-Heuristic Dynamic Programming in the Three-Wheeled Mobile Transport Robot Control. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 3–7 June 2018; pp. 763–776. [Google Scholar]
- Hendzel, Z.; Rykała, Ł. Description of kinematics of a wheeled mobile robot with mecanum wheels. Model. Eng. 2015, 26, 5–12. [Google Scholar]
- Hendzel, Z. A Description of the Motion of a Mobile Robot with Mecanum Wheels–Kinematics. In Proceedings of the Conference on Automation, Warsaw, Poland, 27–29 March 2019; pp. 346–355. [Google Scholar]
- Li, Y.; Dai, S.; Zheng, Y.; Tian, F.; Yan, X. Modeling and kinematics simulation of a Mecanum wheel platform in RecurDyn. J. Robot. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Taheri, H.; Qiao, B.; Ghaeminezhad, N. Kinematic model of a four mecanum wheeled mobile robot. Int. J. Comput. Appl. 2015, 113, 6–9. [Google Scholar] [CrossRef]
- Li, Y.; Ge, S.; Dai, S.; Zhao, L.; Yan, X.; Zheng, Y.; Shi, Y. Kinematic Modeling of a Combined System of Multiple Mecanum-Wheeled Robots with Velocity Compensation. Sensors 2020, 20, 75. [Google Scholar] [CrossRef] [Green Version]
- Röhrig, C.; Heß, D.; Künemund, F. Motion Controller Design for a Mecanum Wheeled Mobile Manipulator. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; pp. 444–449. [Google Scholar]
- Maulana, E.; Muslim, M.; Hendrayawan, A.V. Inverse Kinematic Implementation of Four-WHEELS mecanum Drive Mobile Robot Using Stepper Motors. In Proceedings of the 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 20–21 May 2015; pp. 51–56. [Google Scholar]
- Jia, Q.; Wang, M.; Liu, S.; Ge, J.; Gu, C. Research and Development of Mecanum-Wheeled Omnidirectional Mobile Robot Implemented by Multiple Control Methods. In Proceedings of the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 28–30 November 2016; pp. 1–4. [Google Scholar]
- Hendzel, Z.; Rykała, Ł. Modelling of Dynamics of a Wheeled Mobile Robot with Mecanum Wheels with the use of Lagrange Equations of the Second Kind. Int. J. Appl. Mech. Eng. 2017, 22, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Zeidis, I.; Zimmermann, K. Dynamics of a four wheeled mobile robot with Mecanum wheels. J. Appl. Math. Mech. Z. Angew. Math. Mech. 2019, 99, e201900173. [Google Scholar] [CrossRef]
- Becker, F.; Bondarev, O.; Zeidis, I.; Zimmermann, K.; Abdelrahman, M.; Adamov, B. An approach to the kinematics and dynamics of a four-wheel Mecanum vehicle. Sci. J. IFToMM Probl. Mech. 2014, 2, 27–37. [Google Scholar]
- Adamov, B.I.; Saypulaev, G.R. A Study of the Dynamics of an Omnidirectional Platform, Taking into Account the Design of Mecanum Wheels and Multicomponent Contact Friction. In Proceedings of the 2020 International Conference Nonlinearity, Information and Robotics (NIR), Innopolis, Russia, 3–6 December 2020; pp. 1–6. [Google Scholar]
- Vlantis, P.; Bechlioulis, C.P.; Karras, G.; Fourlas, G.; Kyriakopoulos, K.J. Fault Tolerant Control for Omni-Directional Mobile Platforms with 4 Mecanum Wheels. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2395–2400. [Google Scholar]
- Hendzel, Z. A Description of the Motion of a Mobile Robot with Mecanum Wheels–Dynamics. In Proceedings of the Conference on Automation, Warsaw, Poland, 27–29 March 2019; pp. 337–345. [Google Scholar]
- Tătar, M.O.; Popovici, C.; Mândru, D.; Ardelean, I.; Pleşa, A. Design and Development of an Autonomous Omni-Directional Mobile Robot with Mecanum Wheels. In Proceedings of the 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22 May 2014; pp. 1–6. [Google Scholar]
- Ma’arif, A.; Vera, M.A.M.; Mahmoud, M.S.; Ladaci, S.; Çakan, A.; Parada, J.N. Backstepping Sliding Mode Control for Inverted Pendulum System with Disturbance and Parameter Uncertainty. J. Robot. Control 2022, 3, 86–92. [Google Scholar] [CrossRef]
- Reguii, I.; Hassani, I.; Rekik, C. Mobile Robot Navigation Using Planning Algorithm and Sliding Mode Control in a Cluttered Environment. J. Robot. Control 2022, 3, 166–175. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Xiao, B.; Yang, Y.; Ling, J. Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot. ISA Trans. 2022; in press. [Google Scholar] [CrossRef]
- Xin, L.; Wang, Q.; She, J.; Li, Y. Robust adaptive tracking control of wheeled mobile robot. Robot. Auton. Syst. 2016, 78, 36–48. [Google Scholar] [CrossRef]
- Huynh, V.N.S.; Ngo, H.Q.T.; Nguyen, T.P.; Nguyen, H. High Performance of an Adaptive Sliding Mode Controller under Varying Loads for Lifting-Type Autonomous Grounded Robot. Appl. Sci. 2020, 10, 5858. [Google Scholar] [CrossRef]
- Jabeur, C.B.; Seddik, H. Optimized Neural networks-PID Controller with Wind Rejection Strategy for a Quad-rotor. J. Robot. Control 2022, 3, 62–72. [Google Scholar] [CrossRef]
- Ginting, A.H.; Doo, S.Y.; Pollo, D.E.; Djahi, H.J.; Mauboy, E.R. Attitude Control of a Quadrotor with Fuzzy Logic Controller on SO (3). J. Robot. Control 2022, 3, 101–106. [Google Scholar] [CrossRef]
- Muni, M.K.; Parhi, D.R.; Kumar, P.B.; Sahu, C.; Kumar, S. Towards motion planning of humanoids using a fuzzy embedded neural network approach. Appl. Soft Comput. 2022, 119, 108588. [Google Scholar] [CrossRef]
- Štefek, A.; Pham, V.T.; Krivanek, V.; Pham, K.L. Optimization of Fuzzy Logic Controller Used for a Differential Drive Wheeled Mobile Robot. Appl. Sci. 2021, 11, 6023. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Y. Adaptive fractional-order non-singular terminal sliding mode control based on fuzzy wavelet neural networks for omnidirectional mobile robot manipulator. ISA Trans. 2022, 121, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, X.; Chen, B.; Wu, H. Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 2018, 53, 85–94. [Google Scholar] [CrossRef]
- Fang, H.; Zhu, Y.; Dian, S.; Xiang, G.; Guo, R.; Li, S. Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming. ISA Trans. 2021; in press. [Google Scholar] [CrossRef] [PubMed]
- Muszynska, M.; Burghardt, A.; Kurc, K.; Szybicki, D. Verification hybrid control of a wheeled mobile robot and manipulator. Open Eng. 2016, 6, 64–72. [Google Scholar] [CrossRef]
- Szuster, M.; Gierlak, P. Approximate dynamic programming in tracking control of a robotic manipulator. Int. J. Adv. Robot. Syst. 2016, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Szuster, M.; Hendzel, Z. Intelligent Optimal Adaptive Control for Mechatronic Systems; Springer: Berlin, Germany, 2018. [Google Scholar]
- Penar, P.; Hendzel, Z. Biologically Inspired Neural Behavioral Control of the Wheeled Mobile Robot. In Proceedings of the Conference on Automation, Warsaw, Poland, 18–19 March 2021; Springer: Cham, Switzerland, 2021; pp. 96–105. [Google Scholar]
- Sun, Z.; Hu, S.; He, D.; Zhu, W.; Xie, H.; Zheng, J. Trajectory-tracking control of Mecanum-wheeled omnidirectional mobile robots using adaptive integral terminal sliding mode. Comput. Electr. Eng. 2021, 96, 107500. [Google Scholar] [CrossRef]
- Sun, Z.; Xie, H.; Zheng, J.; Man, Z.; He, D. Path-following control of Mecanum-wheels omnidirectional mobile robots using nonsingular terminal sliding mode. Mech. Syst. Signal Process. 2021, 147, 107128. [Google Scholar] [CrossRef]
- Yadav, P.S.; Agrawal, V.; Mohanta, J.C.; Ahmed, M.F. A robust sliding mode control of mecanum wheel-chair for trajectory tracking. Mater. Today Proc. 2022, 56, 623–630. [Google Scholar] [CrossRef]
- Pizá, R.; Carbonell, R.; Casanova, V.; Cuenca, Á.; Salt Llobregat, J.J. Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels. Appl. Sci. 2022, 12, 3560. [Google Scholar] [CrossRef]
- Alakshendra, V.; Chiddarwar, S.S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn. 2017, 87, 2147–2169. [Google Scholar] [CrossRef]
- Hendzel, Z.; Kołodziej, M. Robust Tracking Control of Omni-Mecanum Wheeled Robot. In Proceedings of the Conference on Automation, Warsaw, Poland, 18–19 March 2021; pp. 219–229. [Google Scholar]
- Zhao, T.; Zou, X.; Dian, S. Fixed-time observer-based adaptive fuzzy tracking control for Mecanum-wheel mobile robots with guaranteed transient performance. Nonlinear Dyn. 2022, 107, 921–937. [Google Scholar] [CrossRef]
- Qin, Y.; Dian, S.; Guo, B.; Xiang, G.; Fang, H.; Wang, H.; Zhang, X. Trajectory Tracking Control for Mecanum-Wheel Cambered Mobile Robots Based on Online Adaptive Critic Optimal Controller. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 314–319. [Google Scholar]
- Jiang, M.; Chen, L.; Wang, Y.; Wu, H. Adaptive Backstepping Control for Mecanum-Wheeled Omnidirectional Vehicle Using Neural Networks. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 378–386. [Google Scholar] [CrossRef]
- Wang, D.; Wei, W.; Yeboah, Y.; Li, Y.; Gao, Y. A robust model predictive control strategy for trajectory tracking of omni-directional mobile robots. J. Intell. Robot. Syst. 2020, 98, 439–453. [Google Scholar] [CrossRef]
- Malayjerdi, E.; Kalani, H.; Malayjerdi, M. Self-Tuning Fuzzy Pid Control of a Four-Mecanum Wheel Omni-Directional Mobile Platform. In Proceedings of the 29th Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2021; pp. 816–820. [Google Scholar]
- Cao, G.; Zhao, X.; Ye, C.; Yu, S.; Li, B.; Jiang, C. Fuzzy adaptive PID control method for multi-mecanum-wheeled mobile robot. J. Mech. Sci. Technol. 2022, 36, 2019–2029. [Google Scholar] [CrossRef]
- Zijie, N.; Qiang, L.; Yonjie, C.; Zhijun, S. Fuzzy control strategy for course correction of omnidirectional mobile robot. Int. J. Control Autom. Syst. 2019, 17, 2354–2364. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Csáji, B.C. Approximation with Artificial Neural Networks. Master’s Thesis, Eotvos Loránd University, Budapest, Hungary, 2001. [Google Scholar]
- Tsai, C.C.; Wu, H.L. Nonsingular Terminal Sliding Control Using Fuzzy Wavelet Networks for Mecanum Wheeled Omni-Directional Vehicles. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar]
- Tsai, C.C.; Wu, H.L.; Lee, Y.R. Intelligent adaptive motion controller design for mecanum wheeled omnidirectional robots with parameter variations. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11, 91–96. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Zhang, G.; Fan, J.; Jia, S. Neural network adaptive sliding mode control for omnidirectional vehicle with uncertainties. ISA Trans. 2019, 86, 201–214. [Google Scholar] [CrossRef]
- Kuo, C.H. Trajectory and Heading Tracking of a Mecanum Wheeled Robot Using Fuzzy LOGIC control. In Proceedings of the 2016 International Conference on Instrumentation, Control and Automation (ICA), Bandung, Indonesia, 29–31 August 2016; pp. 54–59. [Google Scholar]
- Kumile, C.M.; Tlale, N.S. Intelligent Distributed Fuzzy Logic Control System (IDFLCS) of a Mecanum Wheeled Autonomous Guided Vehicle. In Proceedings of the IEEE International Conference Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; Volume 1, pp. 131–137. [Google Scholar]
- Jamali, P.; Tabatabaei, S.M.; Sohrabi, O.; Seifipour, N. Software Based Modeling, Simulation and Fuzzy Control of a Mecanum Wheeled Mobile Robot. In Proceedings of the 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 13–15 February 2013; pp. 200–204. [Google Scholar]
- Hendzel, Z.; Szuster, M.; Gierlak, P. Sieci Neuronowe i Systemy Rozmyte; Oficyna Wydawnicza Politechniki Rzeszowskiej: Rzeszów, Poland, 2010. [Google Scholar]
- Gao, W.; Selmic, R.R. Neural network control of a class of nonlinear systems with actuator saturation. IEEE Trans. Neural Netw. 2006, 17, 147–156. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, B. Adaptive sliding mode control of manipulators based on fuzzy random vector function links for friction compensation. Optik 2021, 227, 166055. [Google Scholar] [CrossRef]
- Dian, S.; Fang, H.; Zhao, T.; Wu, Q.; Hu, Y.; Guo, R.; Li, S. Modeling and trajectory tracking control for magnetic wheeled mobile robots based on improved dual-heuristic dynamic programming. IEEE Trans. Ind. Inform. 2020, 17, 1470–1482. [Google Scholar] [CrossRef]
Indicator | |||||||
---|---|---|---|---|---|---|---|
wheel 1, i = 1 wheel 2, i = 2 wheel 3, i = 3 wheel 4, i = 4 mean value | 3.5175 3.5244 3.5244 3.5175 3.5209 | 2.6729 2.6855 2.6855 2.6729 2.6792 | 2.0919 1.7741 1.7741 2.0919 1.9330 | 1.0540 1.2389 1.2389 1.0540 1.1465 | 0.2740 | 0.0043 | 0.1969 |
Indicator | |||||||
---|---|---|---|---|---|---|---|
wheel 1, i = 1 wheel 2, i = 2 wheel 3, i = 3 wheel 4, i = 4 mean value | 0.3933 0.6514 0.6264 0.5039 0.5438 | 0.9179 1.3743 0.8208 0.9180 1.0078 | 0.1038 0.1359 0.1805 0.1825 0.1507 | 0.1828 0.2611 0.2529 0.2579 0.2387 | 0.0442 | 0.0175 | 0.0162 |
Indicator | |||||||
---|---|---|---|---|---|---|---|
wheel 1, i = 1 wheel 2, i = 2 wheel 3, i = 3 wheel 4, i = 4 mean value | 5.1201 4.6355 4.6579 5.1606 4.8935 | 3.1432 3.0982 3.0943 3.2050 3.1352 | 2.8616 2.1873 2.1949 2.8842 2.5320 | 1.3841 1.4994 1.4994 1.3841 1.4380 | 0.3751 | 0.0124 | 0.2606 |
Indicator | |||||||
---|---|---|---|---|---|---|---|
wheel 1, i = 1 wheel 2, i = 2 wheel 3, i = 3 wheel 4, i = 4 mean value | 0.7718 0.7149 0.9735 1.1244 0.8961 | 4.1174 3.8033 4.8162 4.0510 4.1970 | 0.1371 0.2099 0.1834 0.2383 0.1922 | 0.3763 0.4677 0.4891 0.4718 0.4512 | 0.0846 | 0.0319 | 0.0278 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szeremeta, M.; Szuster, M. Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels. Appl. Sci. 2022, 12, 5322. https://doi.org/10.3390/app12115322
Szeremeta M, Szuster M. Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels. Applied Sciences. 2022; 12(11):5322. https://doi.org/10.3390/app12115322
Chicago/Turabian StyleSzeremeta, Mateusz, and Marcin Szuster. 2022. "Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels" Applied Sciences 12, no. 11: 5322. https://doi.org/10.3390/app12115322
APA StyleSzeremeta, M., & Szuster, M. (2022). Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels. Applied Sciences, 12(11), 5322. https://doi.org/10.3390/app12115322