Chemical Quality and Hydrogeological Settings of the El-Farafra Oasis (Western Desert of Egypt) Groundwater Resources in Relation to Human Uses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Hydrochemistry
2.3. Reliability Check of Chemical Analysis
2.4. Calculation of the Water Quality Index (WQI) for Drinking Purposes
2.5. Water Quality Indices Calculation for Irrigation Purposes
2.6. Piper-Trilinear Diagram
2.7. Gibbs Diagram
2.8. The US Salinity Laboratory Staff Diagram
2.9. Principal Component Analysis (PCA)
3. Results and Discussion
3.1. Drinking Purposes
Samples No. | Latitude | Longitude | Elevation | pH | E.C. | T.D.S. | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | CO32– | Cl− | SO42− | NO2− | NO3− | NH4+ | TP | SRP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(N) | (E) | m (a.s.l.) | µS·cm−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | µg·L−1 | µg·L−1 | µg·L−1 | µg·L−1 | µg·L−1 | ||
S1 | 27°03′24.6″ | 27°57′49.3″ | 117 ± 5.7 | 6.74 | 430 | 291 | 31.6 | 16.4 | 16.9 | 10.3 | 138.8 | 0.0 | 56.9 | 20.1 | 12 | 410 | 0.0 | 70 | 0.0 |
S2 | 27°04′49.6″ | 27°55′11.6″ | 74.2 ± 8.1 | 6.19 | 390 | 254 | 25.6 | 13.2 | 14.5 | 12.2 | 102.4 | 0.0 | 58.5 | 27.4 | 0.0 | 496 | 5.0 | 14 | 0.0 |
S3 | 27°04′53.8″ | 27°58′10.3″ | 83 ± 3.9 | 7.78 | 1220 | 864 | 88.9 | 46.0 | 122.8 | 23.5 | 230.2 | 0.0 | 147.1 | 205.6 | 188 | 2740 | 360 | 10 | 3.4 |
S4 | 27°04′54.2″ | 27°57′17.4″ | 82.1 ± 6.4 | 6.60 | 1290 | 901 | 96.4 | 49.8 | 89.5 | 19.2 | 346.2 | 0.0 | 132.7 | 167.3 | 0.0 | 1230 | 12 | 0.0 | 0.0 |
S5 | 27°00′46.8″ | 27°58′34.8″ | 107.7 ± 3.4 | 6.33 | 320 | 227 | 22.6 | 11.7 | 20.7 | 14.7 | 91.5 | 0.0 | 45.7 | 19.7 | 0.0 | 382 | 35 | 5.4 | 3.6 |
S6 | 27°00′58.2″ | 27°55′41.1″ | 100.6 ± 5 | 6.85 | 330 | 227 | 21.1 | 10.9 | 37.5 | 7.4 | 64.7 | 0.0 | 61.5 | 24.3 | 3.2 | 334 | 0.0 | 0.0 | 0.0 |
S7 | 26°58′13.7″ | 28°14′31.3″ | 103 ± 3.8 | 6.15 | 530 | 322 | 34.6 | 17.9 | 20.9 | 8.5 | 101.4 | 0.0 | 101.4 | 37.4 | 0.0 | 478 | 0.0 | 54 | 26 |
S8 | 27°05′46.2″ | 28°31′44.7″ | 98 ± 4.1 | 6.20 | 650 | 419 | 49.7 | 25.7 | 23.5 | 8.0 | 185.4 | 0.0 | 111.3 | 15.5 | 0.0 | 660 | 43 | 0.0 | 0.0 |
S9 | 27°04′18.7″ | 27°52′47.3″ | 63.7 ± 3.5 | 6.19 | 320 | 216 | 27.1 | 14.0 | 15.4 | 9.5 | 76.4 | 0.0 | 55.1 | 18.9 | 0.0 | 360 | 0.0 | 60 | 0.0 |
S10 | 27°08′35.6″ | 27°55′23.3″ | 54.8 ± 7.6 | 6.31 | 300 | 200 | 27.1 | 14.0 | 16.9 | 12.2 | 48.1 | 0.0 | 70.7 | 10.5 | 4.0 | 1150 | 0.0 | 0.0 | 0.0 |
S11 | 27°09′00.5″ | 27°56′28.3″ | 58.2 ± 3.7 | 6.20 | 280 | 157 | 21.1 | 10.9 | 15.6 | 4.0 | 12.4 | 0.0 | 88.9 | 4.3 | 0.0 | 520 | 2.0 | 0.0 | 0.0 |
S12 | 27°08′14.3″ | 27°56′21.4″ | 59.1 ± 3.7 | 6.20 | 230 | 143 | 15.9 | 12.5 | 13.6 | 13.1 | 12.8 | 0.0 | 71.6 | 3.5 | 0.0 | 392 | 0.0 | 0.0 | 0.0 |
S13 | 27°07′12.5″ | 27°57′31.6″ | 63.7 ± 3.9 | 6.19 | 300 | 177 | 21.9 | 10.9 | 16.0 | 13.0 | 17.8 | 0.0 | 92.6 | 4.6 | 0.0 | 380 | 20 | 0.0 | 0.0 |
S14 | 27°22′15″ | 28°13′08.8″ | 31.3 ± 4.3 | 7.25 | 330 | 200 | 25.6 | 13.2 | 16.0 | 18.2 | 24.4 | 0.0 | 102.0 | 1.1 | 0.0 | 400 | 15 | 0.0 | 0.0 |
S15 | 27°24′54.9″ | 28°20′50.6″ | 39.3 ± 5.4 | 7.09 | 440 | 260 | 34.6 | 17.9 | 18.6 | 18.1 | 33.5 | 0.0 | 135.5 | 1.5 | 0.0 | 400 | 0.0 | 0.0 | 0.0 |
S16 | 27°22′11.6″ | 28°20′43.3″ | 72.7 ± 4.3 | 6.86 | 520 | 292 | 40.7 | 21.0 | 15.2 | 17.5 | 29.2 | 0.0 | 164.8 | 3.5 | 0.0 | 300 | 0.0 | 0.0 | 0.0 |
3.2. Irrigation Purposes
3.3. Piper-Trilinear Diagram
3.4. Gibbs Diagram
3.5. Rock-Water Interaction and Source Deduction
3.6. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Wu, W.Y.; Lo, M.H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.F.; Ducharne, A.; Yang, Z.L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 2020, 11, 3710. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Taylor, R.G.; Favreau, G.; Todd, M.C.; Shamsudduha, M.; Villholth, K.G.; MacDonald, A.M.; Scanlon, B.R.; Kotchoni, D.O.; Vouillamoz, J.M.; et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 2019, 572, 230–234. [Google Scholar] [CrossRef]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; Van Den Hurk, B.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Lo, M.H.; Famiglietti, J.S. Irrigation in California’s Central Valley strengthens the southwestern US water cycle. Geophys. Res. Lett. 2013, 40, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Abd El Samie, S.; Sadek, M. Groundwater recharge and flow in the Lower Cretaceous Nubian Sandstone aquifer in the Sinai Peninsula, using isotopic techniques and hydrochemistry. Hydrogeol. J. 2001, 9, 378–389. [Google Scholar] [CrossRef]
- Abdel-Satar, A.M. Water quality assessment of River Nile from Idfo to Cairo. Egypt. J. Aquat. Res. 2005, 31, 200–223. [Google Scholar]
- Abd El-Hady, H.H. Alternations in biochemical structures of phytoplankton in Aswan Reservoir and River Nile. Egypt J. Biol. Environ. Sci. 2014, 4, 68–80. [Google Scholar]
- Mohie El Din, M.O.; Moussa, A.M. Water management in Egypt for facing the future challenges. J. Adv. Res. 2016, 7, 403–412. [Google Scholar]
- Mohie El Din, M.O.; Moussa, A.M.; Hinkelmann, R. Impacts of climate change on water quantity, water salinity, food security, and socioeconomy in Egypt. Water Sci. Eng. 2021, 14, 17–27. [Google Scholar]
- Moghazy, N.H.; Kaluarachchi, J.J. Assessment of groundwater resources in Siwa Oasis, Western Desert, Egypt. Alex. Eng. J. 2020, 59, 149–163. [Google Scholar] [CrossRef]
- Gado, T.A.; El-Agha, D.E. Climate Change Impacts on Water Balance in Egypt and Opportunities for Adaptations. In Agro-Environmental Sustainability in MENA Regions; Springer: Cham, Switzerland, 2021; pp. 13–47. [Google Scholar]
- Elsheikh, A.E. Mitigation of groundwater level deterioration of the Nubian Sandstone aquifer in Farafra Oasis, Western Desert, Egypt. Environ. Earth Sci. 2015, 74, 2351–2367. [Google Scholar] [CrossRef]
- Ebraheem, A.; Riad, S.; Wycisk, P.; Seif El-Nasr, A. Simulation of impact of present and future groundwater extraction from the non-replenished Nubian Sandstone Aquifer in southwest Egypt. Environ. Geol. 2002, 43, 188–196. [Google Scholar]
- Gossel, W.; Ebraheem, A.M.; Wycisk, P. A very large scale GISbase groundwater flow model for the Nubian Sandstone aquifer in Easertn Sahara (Egypt, northern Sudan and eastern Libya). Hydrog. J. 2004, 12, 698–713. [Google Scholar] [CrossRef]
- Wagdy, A. An overview of groundwater management in Egypt. J. Eng. Appl. Sci. 2009, 1, 1–13. [Google Scholar]
- El Bastawesy, M.; Ali, R.R. The use of GIS and remote sensing for the assessment of waterlogging in the dryland irrigated catchments of Farafra Oasis, Egypt. Hydrol. Process. 2013, 27, 206–216. [Google Scholar] [CrossRef]
- Saber, A.A.; Ichihara, K.; Cantonati, M. Molecular phylogeny and detailed morphological analysis of two freshwater Rhizoclonium strains from contrasting spring types in Egypt and Italy. Plant Biosyst. 2017, 151, 800–812. [Google Scholar] [CrossRef]
- Powell, O.; Fensham, R. The history and fate of the Nubian Sandstone Aquifer springs in the oasis depressions of the Western Desert, Egypt. Hydrogeol. J. 2016, 24, 395–406. [Google Scholar] [CrossRef]
- Voss, C.I.; Soliman, S.M. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: Classical groundwater questions and parsimonious hydrogeologic analysis and modeling. Hydrogeol. J. 2014, 22, 441–468. [Google Scholar] [CrossRef]
- Dabous, A.; Osmond, J. Uranium isotopic study of artesian and pluvial contributions to the Nubian Aquifer, Western Desert, Egypt. J. Hydrol. 2001, 243, 242–253. [Google Scholar] [CrossRef]
- Hamed, Y.; Hadji, R.; Redhaounia, B.; Zighmi, K.; Bâali, F.; El Gayar, A. Climate impact on surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterr. J. Environ. Integr. 2018, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plant and Water; Division of Agricultural Sciences, University of California: Los Angeles, CA, USA, 1978; p. 309. [Google Scholar]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 2000; p. 1325. [Google Scholar]
- Matthess, G. The Properties of Groundwater; Department of Environmental Science, John Wiley and Sons Inc.: New York, NY, USA, 1982; p. 406. [Google Scholar]
- Singhal, B.B.S.; Gupta, R.P. Applied Hydrogeology of Fractured Rocks; Kluwer Academic: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Silvert, W. Fuzzy indices of environmental conditions. Ecol. Model. 2000, 130, 111–119. [Google Scholar] [CrossRef]
- Boyacioglu, H. Development of a water quality index based on a European classification scheme. Water 2007, 33, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Horton, R. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Brown, R.M.; Mccleiland, N.J.; Deiniger, R.A.; O’Connor, M.F. Water Quality Index-Crossing the Physical Barrier. In Proceedings of the International Conference on Water Pollution Research Jerusalem, Jerusalem, Israel, 18–23 June 1972; Jenkis, S.H., Ed.; 1972; Volume 6, pp. 787–797. [Google Scholar]
- Tiwari, T.; Mishra, M.A. Preliminary assignment of water quality index of major Indian rivers. Indian J. Environ. Prot. 1985, 5, 276–279. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils; US Department of Agriculture: Washington, DC, USA, 1954; p. 60.
- Todd, D.K. Groundwater Hydrology; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Eaton, F.M. Significance of carbonates in irrigation waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Raghunath, H.M. Groundwater; Wiley Eastern: New Delhi, India, 1987. [Google Scholar]
- Kelly, W.P. Permissible composition and concentration of irrigated waters. Proc. AFCS 1940, 66, 607–613. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Water; No. 969; US Department of Agriculture: Washington, DC, USA, 1955.
- Paliwal, K.V. Irrigation with Saline Water; Monogram No. 2 (New Series); IARI: New Delhi, India, 1972; p. 198.
- Doneen, L.D. Notes on Water Quality in Agriculture; Water Sciences and Engineering Paper 4001; Department of Water Sciences and Engineering, University of California: Los Angeles, CA, USA, 1964.
- Soltan, M.E. Evaluation of groundwater quality in Dakhla Oasis (Egyptian Western Desert). Environ. Monit. Assess 1999, 57, 157–168. [Google Scholar] [CrossRef]
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water Analysis; USGS Groundwater Note, No. 12; USGS: Reston, VA, USA, 1953. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; ISBN 3-900051-07-0. [Google Scholar]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, L.V. Classification and Use of Irrigation Waters; No. 962; U.S. Department of Agriculture: Washington, DC, USA, 1948; p. 40.
- Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [Google Scholar] [CrossRef]
- Morales, M.M.; Martı, P.; Llopis, A.; Campos, L.; Sagrado, S. An environmental study by factor analysis of surface seawater in the Gulf of Valencia (Western Mediterranean). Anal. Chim. Acta 1999, 394, 109–117. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Carroll, D. Rainwater As A Chemical Agent of Geologic Processes: A Review; USGS Water Supply Paper; US Government Printing Office: Washington, DC, USA, 1962; p. 1535.
- Madison, R.J.; Brunett, J.O. Overview of the occurrence of nitrate in ground water of the United States. In National Water Summary 1984-Hydrologic Events, Selected Water-Quality Trends, and Ground-Water Resources; U.S. Geological Survey Water-Supply Paper 2275; U.S. Geological Survey: Reston, VA, USA, 1984; pp. 93–105. [Google Scholar]
- Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; et al. The Quality of our Nation’s Waters—Nutrients in the Nation’s Streams and Groundwater, 1992–2004; U.S. Geological Survey Circular 1350; U.S. Geological Survey: Reston, VA, USA, 2010; p. 174.
- World Health Organization (WHO). Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Washington, DC, USA, 2017; p. 541.
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture, Irrigation and Drainage (Paper No. 29); FAO: Rome, Italy, 1985. [Google Scholar]
- Raihan, F.; Alam, J.B. Assessment of groundwater quality in Sunamganj Bangladesh. Iran. J. Environ. Health Sci. Eng. 2008, 6, 155–166. [Google Scholar]
- Punmia, B.C.; Lal, P.B.B. Irrigation and Water Power Engineering; Standard Publishers Distributors: New Delhi, India, 1981. [Google Scholar]
- Asaduzzaman, M. Handbook of Groundwater and Wells; BRAC; Prokashana: Dhaka, Bangladesh, 1985. [Google Scholar]
- Joshi, D.M.; Kumar, A.; Agrawal, N. Assessment of the irrigation water quality of River Ganga in Haridwar district. Rasayan J. Chem. 2009, 2, 285–292. [Google Scholar]
- Szabolcs, I.; Darab, C. The Influence of Irrigation Water of High Sodium Carbonate Content of Soils. In Proceedings of 8th International Congress Soil Science Sodics Soils; Szabolics, I., Ed.; Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, ISSS Trans II: Tsukuba, Japan, 1964; pp. 802–812. [Google Scholar]
- Wen, X.; Wu, Y.; Su, J.; Zhang, Y.; Liu, F.J.E.G. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environ. Geol. 2005, 48, 665–675. [Google Scholar] [CrossRef]
- Zahid, A.; Hassan, M.Q.; Balke, K.D.; Flegr, M.; Clark, D.W. Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh. Environ. Geol. 2008, 54, 1247–1260. [Google Scholar] [CrossRef]
- Zhang, G.; Deng, W.; Yang, Y.S.; Salama, R.B. Evolution study of a regional groundwater system using hydrochemistry and stable isotopes in Songnen Plain, northeast China. Hydrol. Process. 2007, 21, 1055–1065. [Google Scholar] [CrossRef]
- Brindha, K.; Pavelic, P.; Sotoukee, T.; Douangsavanh, S.; Elango, L. Geochemical characteristics and groundwater quality in the Vientiane plain, Laos. Expos. Health 2016, 9, 89–104. [Google Scholar] [CrossRef]
- Sami, K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J. Hydrol. 1992, 139, 27–48. [Google Scholar] [CrossRef]
- Rajesh, R.; Brindha, K.; Murugan, R.; Elango, L. Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda district, Andhra Pradesh, India. Environ. Earth Sci. 2012, 65, 1203–1213. [Google Scholar] [CrossRef]
- Kumar, P.J.S. Evolution of groundwater chemistry in and around Vaniyambadi Industrial Area: Differentiating the natural and anthropogenic sources of contamination. Geochemistry 2014, 74, 641–651. [Google Scholar] [CrossRef]
- Raju, A.; Singh, A. Assessment of groundwater quality and mapping human health risk in central ganga alluvial plain, Northern India. Environ. Process. 2017, 4, 375–397. [Google Scholar] [CrossRef]
- Cerling, T.E.; Pederson, B.L.; Damm, K.L.V. Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology 1989, 17, 552–554. [Google Scholar] [CrossRef]
- Fisher, R.S.; Mulican, W.F. Hydrochemical evolution of sodium sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol. J. 1997, 10, 455–474. [Google Scholar] [CrossRef]
- Datta, P.S.; Tyagi, S.K. Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. J. Geol. Soc. India 1996, 47, 179–188. [Google Scholar]
- Rahman, M.A.; Majumder, R.K.; Rahman, S.H.; Halim, M. Sources of deep groundwater salinity in the southwestern zone of Bangladesh. Environ. Earth. Sci. 2011, 63, 363–373. [Google Scholar] [CrossRef]
- Tanvir Rahman, M.A.; Saadat, A.H.M.; Islam, M.; Al-Mansur, M.; Ahmed, S. Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh. Appl. Water Sci. 2017, 7, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Stallard, R.F.; Edmond, J.M. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. Oceans 1983, 88, 9671–9688. [Google Scholar] [CrossRef]
- Singh, A.; Hasnain, S. Environmental geochemistry of Damodar River basin, east coast of India. Environ. Geol. 1999, 37, 124–136. [Google Scholar] [CrossRef]
- El-Sayed, M.H.; Abo El-Fadl, M.M.; Shawky, H.A. Impact of hydrochemical processes on groundwater quality, Wadi Feiran, South Sinai, Egypt. Aust. J. Basic Appl. Sci. 2012, 6, 638–654. [Google Scholar]
- Zaidi, F.K.; Kassem, O.M.; Al-Bassam, A.M.; Al-Humidan, S. Factors governing groundwater chemistry in paleozoic sedimentary aquifers in an arid environment: A case study from hail province in Saudi Arabia. Arab. J. Sci. Eng. 2015, 40, 1977–1985. [Google Scholar] [CrossRef]
- Iqbal, J.; Nazzal, Y.; Howari, F.; Xavier, C.; Yousef, A. Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: The case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Groundw. Sustain. Dev. 2018, 7, 212–219. [Google Scholar] [CrossRef]
- Mayback, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allegre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; pp. 1–312. [Google Scholar]
- Shaaban, A.M.; Mansour, H.A.; Saber, A.A. Unveiling algal biodiversity of El-Farafra Oasis (Western Desert, Egypt) and potential relevance of its use in water bio-assessment: Special interest on springs and drilled wells. Egypt J. Phycol. 2015, 16, 47–75. [Google Scholar] [CrossRef]
- Wołowski, K.; Saber, A.A.; Cantonati, M. Euglenoids from the El Farafra Oasis (Western Desert of Egypt). Pol. Bot. J. 2017, 62, 241–251. [Google Scholar] [CrossRef] [Green Version]
Parameters | Expressed | WHO (2017) (Si) | Ci/Si | Quality Rating (qi) | Weight (wi) | Relative Weight (Wi) |
---|---|---|---|---|---|---|
pH | Units | 6.5–8.5 | 0.73 | 73.47 | 4.00 | 0.08 |
E.C. | µS·cm−1 | 500 | 0.99 | 98.50 | 4.00 | 0.08 |
T.D.S. | mg·L−1 | 500 | 0.47 | 47.38 | 5.00 | 0.10 |
Ca2+ | mg·L−1 | 75 | 0.18 | 18.36 | 2.00 | 0.04 |
Mg2+ | mg·L−1 | 30 | 0.51 | 51.46 | 2.00 | 0.04 |
Na+ | mg·L−1 | 50 | 0.54 | 53.92 | 2.00 | 0.04 |
K+ | mg·L−1 | 20 | 0.69 | 69.38 | 2.00 | 0.04 |
HCO3− | mg·L−1 | 200 | 0.47 | 47.35 | 3.00 | 0.06 |
CO32− | mg·L−1 | NA | NA | NA | NA | NA |
Cl− | mg·L−1 | 250 | 0.37 | 37.41 | 3.00 | 0.06 |
SO42− | mg·L−1 | 200 | 0.18 | 17.66 | 4.00 | 0.08 |
NO2− | µg·L−1 | 3000 | 0.00 | 0.42 | 5.00 | 0.10 |
NO3− | µg·L−1 | 45,000 | 0.01 | 1.48 | 5.00 | 0.10 |
NH4+ | µg·L−1 | 1235 | 0.02 | 2.45 | 5.00 | 0.10 |
TP | µg·L−1 | NA | NA | NA | NA | NA |
SRP | µg·L−1 | 1500 | 0.0014 | 0.14 | 5.00 | 0.10 |
Total | 519.36 | ∑wi = 51 | 1.0 |
S. No. | WQI Values | Water Quality | Number of Water Samples | % Age of Samples |
---|---|---|---|---|
1 | <50 | Excellent | 14 | 87.5 |
2 | 51–100 | Good | 2 | 12.5 |
3 | 101–200 | Fair | 0 | 0 |
4 | 201–300 | Marginal | 0 | 0 |
5 | >300 | Unsuitable | 0 | 0 |
Samples No. | SAR | RSC | KR | SSP | SP | MH | PI | PS | r1 | r2 |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 0.61 | −0.65 | 0.25 | 20.13 | 25.47 | 46.03 | 35.53 | 0.21 | −2.08 | −1.45 |
S2 | 0.58 | −0.69 | 0.27 | 21.06 | 28.48 | 46.03 | 37.64 | 0.29 | −1.78 | −1.24 |
S3 | 2.64 | −4.44 | 0.65 | 39.39 | 41.97 | 46.03 | 18.60 | 2.14 | 0.28 | 0.42 |
S4 | 1.85 | −3.24 | 0.44 | 30.41 | 32.98 | 46.03 | 21.06 | 1.74 | 0.04 | 0.18 |
S5 | 0.88 | −0.59 | 0.43 | 30.10 | 37.90 | 46.03 | 36.16 | 0.21 | −0.95 | −0.04 |
S6 | 1.66 | −0.89 | 0.84 | 45.56 | 48.29 | 46.03 | 28.13 | 0.25 | −0.20 | 0.17 |
S7 | 0.72 | −1.54 | 0.28 | 22.11 | 26.01 | 46.03 | 29.19 | 0.39 | −2.51 | −2.23 |
S8 | 0.67 | −1.56 | 0.22 | 18.22 | 21.10 | 46.03 | 28.69 | 0.16 | −6.57 | −5.94 |
S9 | 0.60 | −1.25 | 0.27 | 21.09 | 26.67 | 46.03 | 31.57 | 0.20 | −2.25 | −1.64 |
S10 | 0.66 | −1.72 | 0.29 | 22.72 | 29.52 | 46.03 | 24.93 | 0.11 | −5.77 | −4.34 |
S11 | 0.69 | −1.75 | 0.35 | 25.85 | 28.60 | 46.03 | 17.02 | 0.04 | −20.58 | −19.44 |
S12 | 0.62 | −1.61 | 0.33 | 24.54 | 33.78 | 56.38 | 17.07 | 0.04 | −19.87 | −15.19 |
S13 | 0.70 | −1.70 | 0.35 | 25.85 | 34.00 | 45.09 | 18.01 | 0.05 | −20.06 | −16.59 |
S14 | 0.64 | −1.97 | 0.29 | 22.67 | 32.87 | 46.03 | 18.19 | 0.01 | −94.92 | −74.72 |
S15 | 0.64 | −2.65 | 0.25 | 20.16 | 28.42 | 46.03 | 16.94 | 0.02 | −95.58 | −80.89 |
S16 | 0.49 | −3.28 | 0.18 | 14.94 | 22.75 | 46.03 | 14.78 | 0.04 | −54.42 | −48.32 |
Parameter | Range | Water Quality Class | Number of Sample | (%) Samples |
---|---|---|---|---|
EC | <250 | Excellent | 1 | 6.3 |
250–750 | Good | 13 | 81.3 | |
750–2000 | Permissible | 2 | 12.5 | |
2000–3000 | Doubtful | 0 | 0.0 | |
>3000 | Unsuitable | 0 | 0.0 | |
SAR | 0–10 | Excellent | 16 | 100.0 |
18-Oct | Good | 0 | 0.0 | |
18–26 | Doubtful | 0 | 0.0 | |
>26 | Unsuitable | 0 | 0.0 | |
RSC | <1.25 | Good | 16 | 100.0 |
1.25–2.5 | Doubtful | 0 | 0.0 | |
>2.5 | Unsuitable | 0 | 0.0 | |
KR | <1 | Suitable | 16 | 100.00 |
>1 | Unsuitable | 0 | 0.0 | |
SSP | <50 | Good | 16 | 100 |
>50 | Bad | 0 | 0 | |
PI | <80 | Good | 16 | 100 |
80–100 | Moderate | 0 | 0 | |
100–200 | Poor | 0 | 0 | |
SP | <20 | Excellent | 0 | 0 |
20–40 | Good | 14 | 87.5 | |
40–60 | Moderate | 2 | 12.5 | |
60–80 | Doubtful | 0 | 0 | |
>80 | Unsuitable | 0 | 0 | |
MH | <50 | Suitable | 15 | 93.7 |
>50 | Unsuitable | 1 | 6.3 | |
PS | <3 | Suitable | 16 | 100 |
>3 | Unsuitable | 0 | 0.0 | |
r1 | <1 | Deep meteoric type | 16 | 100 |
r2 | <1 | 16 | 100 | |
r1 | >1 | Shallow meteoric type | 0 | 0 |
r2 | >1 | 0 | 0 |
Parameters | PC1 | PC2 |
---|---|---|
pH | 0.655 | −0.463 |
E.C. | 0.946 | 0.173 |
T.D.S. | 0.942 | 0.181 |
Ca2+ | 0.952 | 0.134 |
Mg2+ | 0.953 | 0.123 |
Na+ | 0.964 | 0.036 |
K+ | 0.681 | −0.454 |
HCO3− | 0.794 | 0.422 |
Cl− | 0.615 | −0.311 |
SO42− | 0.956 | 0.179 |
NO2− | 0.793 | −0.113 |
NO3− | 0.889 | −0.0321 |
NH4+ | 0.802 | −0.137 |
TP | −0.1307 | 0.755 |
SRP | 0.024 | 0.636 |
Eigen values | 9.47 | 1.83 |
Variability (%) | 59.230 | 12.0 |
Cumulative (%) | 59.230 | 61.230 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, A.A.; Ullah Bhat, S.; Hamid, A.; Gabrieli, J.; Garamoon, H.; Gargini, A.; Cantonati, M. Chemical Quality and Hydrogeological Settings of the El-Farafra Oasis (Western Desert of Egypt) Groundwater Resources in Relation to Human Uses. Appl. Sci. 2022, 12, 5606. https://doi.org/10.3390/app12115606
Saber AA, Ullah Bhat S, Hamid A, Gabrieli J, Garamoon H, Gargini A, Cantonati M. Chemical Quality and Hydrogeological Settings of the El-Farafra Oasis (Western Desert of Egypt) Groundwater Resources in Relation to Human Uses. Applied Sciences. 2022; 12(11):5606. https://doi.org/10.3390/app12115606
Chicago/Turabian StyleSaber, Abdullah A., Sami Ullah Bhat, Aadil Hamid, Jacopo Gabrieli, Hassan Garamoon, Alessandro Gargini, and Marco Cantonati. 2022. "Chemical Quality and Hydrogeological Settings of the El-Farafra Oasis (Western Desert of Egypt) Groundwater Resources in Relation to Human Uses" Applied Sciences 12, no. 11: 5606. https://doi.org/10.3390/app12115606
APA StyleSaber, A. A., Ullah Bhat, S., Hamid, A., Gabrieli, J., Garamoon, H., Gargini, A., & Cantonati, M. (2022). Chemical Quality and Hydrogeological Settings of the El-Farafra Oasis (Western Desert of Egypt) Groundwater Resources in Relation to Human Uses. Applied Sciences, 12(11), 5606. https://doi.org/10.3390/app12115606