Design of a Low-Resolution Gamma-ray Spectrometer for Monitoring Radioactive Levels of Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Experimental Calibration
2.3. Monte Carlo Simulation
2.4. Calculation of MDA in Water
3. Results
3.1. Full Energy Peak Efficiency
3.2. Determination of 18F ACF in Water
3.3. Calculation of MDA of 18F in Water
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adrovic, F. Gamma radiation. In Gamma Radiation; InTech: Rijeka, Croatia, 2012; pp. 43–54. [Google Scholar]
- Vandergriff, K.U. Guidelines for radiation effects on organic materials. In Designing Equipment for Use in Gamma Radiation Environments; National Information Service: Alexandria, VA, USA, 1990; pp. 45–103. [Google Scholar]
- The International Commission on Radiological Protection. The framework of radiological protection. In Radiological Protection and Safety in Medicine; Elsevier Science Inc.: New York, NY, USA, 1996; pp. 9–10. [Google Scholar]
- The International Commission on Radiological Protection. The aims and scope of the recommendations. In The 2007 Recommendations of the International Commission on Radiological Protection; Valentin, J., Ed.; Elsevier Ltd.: Kidlington, UK, 2007; pp. 41–47. [Google Scholar]
- Johnson, T.E. Review of physical principles. In Introduce to Health Physics, 5th ed.; McGraw Hill Education: New York, NY, USA, 2017; pp. 3–56. [Google Scholar]
- International Atomic Energy Agency. Preamble: Principles and fundamental objectives. In International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; IAEA: Vienna, Austria, 1996; pp. 1–9. [Google Scholar]
- Lee, J.W.; Lee, Y.J.; Lee, H.J.; Jeong, G.S.; Lee, S.B. Radiation Safety Management for RT Facilities (2015~2017); Korea Atomic Energy Research Institute: Daejeon, Korea, 2018. [Google Scholar]
- Bagatelas, C.; Tsabaris, C.; Kokkoris, M.; Papadopoulos, C.; Vlastou, R. Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation. Environ. Monit. Assess. 2010, 165, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, K.H.; Joo, K.S. Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment. Nucl. Eng. Technol. 2018, 50, 801–805. [Google Scholar] [CrossRef]
- Park, H.M.; Joo, K.S. Development of a real-time radiation level monitoring sensor for building an underwater radiation monitoring system. J. Sens. Sci. 2015, 24, 96–100. [Google Scholar]
- Tsabaris, C.; Bagatelas, C.; Dakladas, T.; Papadopoulos, C.; Vlastou, R.; Chronis, G. An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl. Radiat. Isot. 2008, 66, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Liu, D.; Wu, B.; Zhang, Y.; Jiang, H. Automated spectra analysis of in situ radioactivity measurements in the marine environment using NaI (Tl) detector. Appl. Radiat. Isot. 2018, 141, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.; Liu, D.; Zhang, Y.; Liu, Y. Monte Carlo simulation of a NaI (Tl) detector for in situ radioactivity measurements in the marine environment. Appl. Radiat. Isot. 2015, 98, 44–48. [Google Scholar] [CrossRef]
- Tsabaris, C.; Androulakaki, E.G.; Prospahopoulos, A.; Alexakis, S.; Eleftheriou, G.; Patiris, D.L.; Pappa, F.K.; Sarantakos, K.; Kokkoris, M.; Vlastou, R. Development and optimization of an underwater in-situ cerium bromide spectrometer for radioactivity measurements in the aquatic environment. J. Environ. Radioact. 2019, 204, 12–20. [Google Scholar] [CrossRef]
- Park, J.G.; Jung, S.H.; Moon, J.H.; Oh, D.; Kang, S.W.; Kim, Y.S. Determination of effective detection distance and minimum detectable activity for radiation monitoring system in water. J. Instrum. 2018, 12, 11–14. [Google Scholar]
- Park, J.G.; Jung, S.H.; Moon, J.; Kim, J.; Oh, D.; Kang, S.; Kim, Y. Determination of minimum detectable activity for underwater radiation detection system. J. Instrum. 2019, 14, P10038. [Google Scholar] [CrossRef]
- Moon, J.; Park, J.; Jung, S.; Kim, Y. Development and Performance Evaluation of Underwater Radiation Monitoring System. J. Instrum. 2020, 14, 213–218. [Google Scholar]
- Ji, Y.; Toung, S.; Min, B.I.; Suh, K. Development and performance of underwater gamma-ray spectrometry for riverbed monitoring. J. Coast. Res. 2021, 114, 330–334. [Google Scholar] [CrossRef]
- GammaSpectacular.com. Available online: http://www.gammaspectacular.com/software-downloads/pra-spectrometry-software (accessed on 17 March 2022).
- Han, S.Y.; Maeng, S.; Lee, H.Y.; Lee, S.H. Preliminary study on the detection efficiency and estimation of minimum detectable activity for a NaI (Tl)-based seawater monitoring system. J. Environ. Radioact. 2020, 218, 106222. [Google Scholar] [CrossRef]
- Canberra Industries, Inc. GenieTM 2000 Spectroscopy Software Operations; Canberra Industries, Inc.: Meriden, CT, USA, 2006; pp. 1–281. [Google Scholar]
- Werner, C.J.; Bull, J.S.; Solomon, C.J.; Brown, F.B.; McKinney, G.W.; Rising, M.E.; Dixon, D.A.; Martz, R.L.; Hughes, H.G.; Cox, L.J.; et al. MCNP6.2 Release Notes; Los Alamos National Laboratory: Santa Fe, NM, USA, 2018. [Google Scholar]
- Saito, K.; Moriuchi, S. Monte Carlo calculation of accurate response functions for a NaI (Tl) detector for gamma rays. Nucl. Instrum. Methods Phys. Res. 1981, 185, 299–308. [Google Scholar] [CrossRef]
- Currie, L.A. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- Knoll, G.F. Limits of detectability. In Radiation Detection and Measurement, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 94–98. [Google Scholar]
- Tsoulfanidis, N.; Landsberger, S. Errors of radiation counting. In Measurement and Detection of Radiation, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 61–63. [Google Scholar]
- Abdul, K.L.; Wo, Y.M.; Muhamat, O. Monitoring of Radionuclides in Ship Ballast Water Following the Fukushima Nuclear Accident. 2011. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/122/44122660.pdf (accessed on 20 May 2022).
Parameters | Details |
---|---|
Scintillation crystal | 1.5″ × 1.5″ NaI(Tl) |
Enclosure | Aluminum case with cylinder shape |
Resolution | 6.5% to 8% at 660 keV |
Gamma efficiency | Approx. 60% at 662 keV |
Input power | +5 V, USB 2.0 |
Current draw | <150 mA |
ADC sample rate and bit rate | 48 kHz, 16 bit |
Pulse length | Adjustable |
Signal-to-noise ratio | 73.97 dB |
High-voltage connector | SHV |
Signal in connector | BNC |
Nuclide | Half-Life (day) | Activity (Bq) | γ-ray Energy (keV) | γ-ray Emission Probability (%) | |||
---|---|---|---|---|---|---|---|
Half-Life | Uncert. | Activity | Uncert. | Prob. | Uncert. | ||
241Am | 158,004 | 219 | 1844 | 74 | 59.54 | 35.92 | 0.17 |
109Cd | 461.9 | 0.4 | 10,257 | 410 | 88.03 | 3.66 | 0.05 |
57Co | 271.81 | 0.04 | 489 | 20 | 122.06 136.47 | 85.49 10.71 | 0.14 0.15 |
139Ce | 137.641 | 0.020 | 594 | 24 | 165.86 | 79.90 | 0.04 |
51Cr | 27.704 | 0.004 | 63,635 | 2600 | 320.08 | 9.89 | 0.02 |
113Sn | 115.09 | 0.03 | 1515 | 61 | 391.70 | 64.97 | 0.17 |
85Sr | 64.850 | 0.007 | 2009 | 81 | 514.00 | 98.5 | 0.4 |
137Cs | 10,976 | 29 | 909 | 37 | 661.66 | 84.99 | 0.20 |
60Co | 1925.23 | 0.29 | 1251 | 50 | 1173.23 1332.49 | 99.85 99.9826 | 0.03 0.0006 |
88Y | 106.63 | 0.05 | 3156 | 130 | 898.04 1836.05 | 93.7 99.346 | 0.3 0.025 |
R (cm) | H (cm) | Volume (ℓ) | Calculated NNaI(Tl) (counts·s−1) | ACF (Bq·s·m−3·counts−1) |
---|---|---|---|---|
12.5 | 29.5 | 14.0 | 2.4783 × 104 | 4.6415 × 1010 |
14.4 | 31.4 | 20.0 | 2.2132 × 104 | 5.1975 × 1010 |
16.0 | 33.0 | 26.0 | 2.1122 × 104 | 5.4460 × 1010 |
17.4 | 34.2 | 32.0 | 2.0775 × 104 | 5.5370 × 1010 |
18.6 | 35.4 | 38.0 | 2.0768 × 104 | 5.5389 × 1010 |
19.7 | 36.5 | 44.0 | 2.0768 × 104 | 5.5389 × 1010 |
20.7 | 37.5 | 50.0 | 2.0768 × 104 | 5.5389 × 1010 |
21.6 | 38.6 | 56.1 | 2.0768 × 104 | 5.5389 × 1010 |
Reading Time (h) | MDA (Bq·m−3) | Reading Time (h) | MDA (Bq·m−3) |
---|---|---|---|
1 | 2.09 × 105 | 13 | 5.62 × 104 |
2 | 1.46 × 105 | 14 | 5.41 × 104 |
3 | 1.18 × 105 | 15 | 5.23 × 104 |
4 | 1.02 × 105 | 16 | 5.06 × 104 |
5 | 9.12 × 104 | 17 | 4.91 × 104 |
6 | 8.32 × 104 | 18 | 7.77 × 104 |
7 | 7.69 × 104 | 19 | 4.64 × 104 |
8 | 7.19 × 104 | 20 | 4.52 × 104 |
9 | 6.77 × 104 | 21 | 4.41 × 104 |
10 | 6.42 × 104 | 22 | 4.31 × 104 |
11 | 6.11 × 104 | 23 | 4.21 × 104 |
12 | 5.85 × 104 | 24 | 4.12 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, T.; Yang, H. Design of a Low-Resolution Gamma-ray Spectrometer for Monitoring Radioactive Levels of Wastewater. Appl. Sci. 2022, 12, 5613. https://doi.org/10.3390/app12115613
Kim S, Kim T, Yang H. Design of a Low-Resolution Gamma-ray Spectrometer for Monitoring Radioactive Levels of Wastewater. Applied Sciences. 2022; 12(11):5613. https://doi.org/10.3390/app12115613
Chicago/Turabian StyleKim, Sangrok, Taeyoon Kim, and Hyungjin Yang. 2022. "Design of a Low-Resolution Gamma-ray Spectrometer for Monitoring Radioactive Levels of Wastewater" Applied Sciences 12, no. 11: 5613. https://doi.org/10.3390/app12115613
APA StyleKim, S., Kim, T., & Yang, H. (2022). Design of a Low-Resolution Gamma-ray Spectrometer for Monitoring Radioactive Levels of Wastewater. Applied Sciences, 12(11), 5613. https://doi.org/10.3390/app12115613