Mechanical-Empirical Pavement Design Guide Applied to Portuguese Pavement Structures
Abstract
:1. Introduction
2. The MEPDG Design Methodology
2.1. Introduction
2.2. Traffic
2.3. Climate
2.4. Pavement Structure and Material Properties
2.5. Pavement Performance Prediction Models
3. Application of MEPDG to the Portuguese Pavement Structures
3.1. Introduction
3.2. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Pavement Performance Prediction Models
Appendix A.1.1. Longitudinal Cracking and Alligator Cracking
Appendix A.1.2. Rutting in HMA Pavement Layers
Appendix A.1.3. Rutting in Unbound Pavement Layers and Foundation or Embankment Soil
Appendix A.1.4. International Roughness Index (IRI)
References
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Abejón, R.; Rojí, E. Research Trends in Pavement Management during the First Years of the 21st Century: A Bibliometric Analysis during the 2000–2013 Period. Appl. Sci. 2018, 8, 1041. [Google Scholar] [CrossRef] [Green Version]
- AASHTO. Guide for Design of Pavement Structures, 4th ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 1993; pp. 1–640. [Google Scholar]
- AASHTO. Mechanistic-Empirical Pavement Design Guide—A Manual of Practice, 1st ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008; pp. 1–204. [Google Scholar]
- Ng, K.; Hutson, Z.; Ksaibati, K.; Wulff, S. A comprehensive field and laboratory test programme and electronic database of pavement material properties for MEPDG. Int. J. Pavement Eng. 2019, 20, 600–614. [Google Scholar] [CrossRef]
- AASHTO. Guide for the Local Calibration of the Mechanical-Empirical Pavement Design Guide; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2010; pp. 1–211. Available online: http://aii.transportation.org/Documents/LCG-1rev3lo-res.pdf (accessed on 3 January 2020).
- Walubita, L.; Lee, S.; Faruk, A.; Hoeffner, J.; Scullion, T.; Abdallah, I.; Nazarian, S. Texas Flexible Pavements and Overlays: Calibration Plans for m-e Models and Related Software; Report No. FHWA/TX-13/0-6658-P4; Center for Transportation Infrastructure Systems, the University of Texas at El Paso: El Paso, TX, USA, 2013; pp. 1–146. Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6658-P4.pdf (accessed on 3 January 2020).
- Jannat, G.; Yuan, X.; Shehata, M. Development of regression equations for local calibration of rutting and IRI as predicted by the MEPDG models for flexible pavements using Ontario’s long-term PMS data. Int. J. Pavement Eng. 2016, 17, 166–175. [Google Scholar] [CrossRef]
- Jannat, G.; Tighe, S. An experimental design-based evaluation of sensitivities of MEPDG prediction: Investigating main and interaction effects. Int. J. Pavement Eng. 2016, 17, 615–625. [Google Scholar] [CrossRef]
- Saha, J.; Nassiri, S.; Soleymani, H.; Bayat, A. A comparative study between Alberta transportation flexible pavement design and MEPDG. Int. J. Pavement Res. Technol. 2012, 5, 379–385. Available online: http://www.ijprt.org.tw/reader/pdf.php?id=263 (accessed on 4 January 2020).
- Saha, J.; Nassiri, S.; Bayat, A.; Soleymani, H. Evaluation of the effects of Canadian climate conditions on the MEPDG predictions for flexible pavement performance. Int. J. Pavement Eng. 2014, 15, 392–401. [Google Scholar] [CrossRef]
- Nassiri, S.; Bayat, A.; Kilburn, P. Traffic inputs for mechanistic-empirical pavement design guide using weigh-in-motion systems in Alberta. Int. J. Pavement Eng. 2014, 15, 483–494. [Google Scholar] [CrossRef]
- El-Badawy, S.; Bayomy, F.; Fugit, S. Traffic characteristics and their impact on pavement performance for the implementation of the Mechanistic-Empirical Pavement Design Guide in Idaho. Int. J. Pavement Res. Technol. 2012, 5, 386–394. Available online: http://www.ijprt.org.tw/reader/pdf.php?id=264 (accessed on 4 January 2020).
- Wu, Z.; Yang, X.; Zhang, Z. Evaluation of MEPDG flexible pavement design using pavement management system data: Louisiana experience. Int. J. Pavement Eng. 2013, 14, 674–685. [Google Scholar] [CrossRef]
- Hasan, M.R.M.; Hiller, J.; You, Z. Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. Int. J. Pavement Eng. 2016, 17, 647–658. [Google Scholar] [CrossRef]
- Wang, Y.; Leng, Z.; Wang, G. Structural contribution of open-graded friction course mixes in mechanistic-empirical pavement design. Int. J. Pavement Eng. 2014, 15, 731–741. [Google Scholar] [CrossRef]
- Breakah, T.; Bausano, J.; Williams, R.; Vitton, S. The impact of fine aggregate characteristics on asphalt concrete pavement design life. Int. J. Pavement Eng. 2011, 12, 101–109. [Google Scholar] [CrossRef]
- Li, Q.; Wang, K.; Hall, K. Verification of virtual climatic data in MEPDG using the LTPP Database. Int. J. Pavement Res. Technol. 2010, 3, 10–15. Available online: http://www.ijprt.org.tw/reader/pdf.php?id=83 (accessed on 5 January 2020).
- Plescan, C.; Plescan, E.-L.; Stanciu, M.; Botis, M.; Taus, D. Sensitivity Analysis of Rigid Pavement Design Based on Semi-Empirical Methods: Romanian Case Study. Symmetry 2021, 13, 168. [Google Scholar] [CrossRef]
- JAE. Manual of Pavement Structures for the Portuguese road Network; Junta Autónoma de Estradas: Lisbon, Portugal, 1995; pp. 1–54. Available online: https://apps.uc.pt/courses/PT/unit/9167/14369/2019-2020 (accessed on 5 January 2020). (In Portuguese)
- Walubita, L.; Fuentes, L.; Faruk, A.; Komba, I.; Prakoso, A.; Naik, B. Mechanistic-empirical compatible traffic data generation: Portable weigh-in-motion versus cluster analysis. J. Test. Eval. 2000, 48, 2377–2392. [Google Scholar] [CrossRef]
- Oh, J.; Walubita, L.; Leidy, J. Establishment of statewide axle load spectra data using cluster analysis. KSCE J. Civ. Eng. 2015, 19, 2083–2090. [Google Scholar] [CrossRef]
- Branco, F.; Pereira, P.; Picado-Santos, L. Road Pavements, 5th ed.; Almedina: Coimbra, Portugal, 2016; pp. 1–388. (In Portuguese) [Google Scholar]
- TDOT. Available online: http://onlinemanuals.txdot.gov/txdotmanuals/tri/classifying_vehicles.htm (accessed on 5 October 2020).
- FHWA. Available online: http://www.fhwa.dot.gov/environment/air_quality/conformity/research/improving_data/taqs03.cfm (accessed on 5 October 2020).
- Walubita, L.; Das, G.; Espinoza, E.; Oh, J.; Scullion, T.; Lee, S.; Garibay, J.; Nazarian, S.; Abdallah, I. Texas Flexible Pavements and Overlays: Year 1 Report—Test Sections, Data Collection, Analyses, and Data Storage System; Report No. FHWA/TX-12/0-6658-1; Center for Transportation Infrastructure Systems, The University of Texas at El Paso: El Paso, TX, USA, 2012; pp. 1–168. Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6658-1.pdf (accessed on 6 January 2020).
- Walubita, L.; Das, G.; Espinoza, E.; Oh, J.; Scullion, T.; Nazarian, S.; Abdallah, I.; Garibay, J. Texas Flexible Pavements and Overlays: Data Analysis Plans and Reporting Format; Report No. FHWA/TX-11/0-6658-P3; Center for Transportation Infrastructure Systems, the University of Texas at El Paso: El Paso, TX, USA, 2012; pp. 1–136. Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6658-P3.pdf (accessed on 6 January 2020).
- Walubita, L.; Lee, S.; Faruk, A.; Scullion, T.; Nazarian, S.; Abdallah, I. Texas Flexible Pavements and Overlays: Year 5 Report—Complete Data Documentation; Report No. FHWA/TX-15/0-6658-3; Center for Transportation Infrastructure Systems, the University of Texas at El Paso: El Paso, TX, USA, 2017; pp. 1–106. Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6658-3.pdf (accessed on 6 January 2020).
- Ferreira, A.; Meneses, S.; Vicente, F. Pavement management system for Oliveira do Hospital, Portugal. Proc. Inst. Civ. Eng.-Transp. 2009, 162, 157–169. Available online: http://www.icevirtuallibrary.com/doi/abs/10.1680/tran.2009.162.3.157 (accessed on 7 January 2020). [CrossRef]
- Ferreira, A.; Meneses, S.; Vicente, F. Alternative decision-aid tool for pavement management. Proc. Inst. Civ. Eng-Transp. 2009, 162, 3–17. Available online: http://www.icevirtuallibrary.com/doi/abs/10.1680/tran.2009.162.1.3 (accessed on 7 January 2020). [CrossRef]
- Picado-Santos, L.; Ferreira, A.; Antunes, A.; Carvalheira, C.; Santos, B.; Bicho, M.; Quadrado, I.; Silvestre, S. Pavement management system for Lisbon. Proc. Inst. Civ. Eng.-Munic. Eng. 2004, 157, 157–165. Available online: http://www.icevirtuallibrary.com/doi/abs/10.1680/muen.2004.157.3.157 (accessed on 11 January 2020). [CrossRef]
- Justo-Silva, R.; Ferreira, A. Pavement maintenance considering traffic accident costs. Int. J. Pavement Res. Technol. 2019, 12, 562–573. [Google Scholar] [CrossRef]
- Ferreira, A.; Jesus, J.; Pinto, J. Road safety management system for Oliveira do Bairro. Proc. Inst. Civ. Eng-Transp. 2010, 163, 143–155. Available online: http://www.icevirtuallibrary.com/doi/abs/10.1680/tran.2010.163.3.143 (accessed on 13 January 2020). [CrossRef]
- Ferreira, A.; Santos, J. Life-cycle cost analysis system for pavement management at project level: Sensitivity analysis to the discount rate. Int. J. Pavement Eng. 2013, 14, 655–673. Available online: http://www.tandfonline.com/doi/abs/10.1080/10298436.2012.719618 (accessed on 13 January 2020). [CrossRef]
- Santos, J.; Ferreira, A. Life-cycle cost analysis for pavement management at project level. Int. J. Pavement Eng. 2013, 14, 71–84. Available online: https://www.tandfonline.com/doi/abs/10.1080/10298436.2011.618535 (accessed on 13 January 2020). [CrossRef]
- Santos, J.; Ferreira, A. Pavement design optimisation considering costs and preventive interventions. J. Transp. Eng. 2012, 138, 911–923. Available online: https://ascelibrary.org/doi/abs/10.1061/(ASCE)TE.1943-5436.0000390 (accessed on 17 January 2020). [CrossRef]
- Shell. Shell Pavement Design Manual—Asphalt Pavements and Overlays for Road Traffic, 1st ed.; Shell International Petroleum Company Ltd.: London, UK, 1978; pp. 1–42. Available online: https://openlibrary.org/books/OL14134868M/Shell_pavement_design_manual (accessed on 17 January 2020).
- Brunton, J.; Brown, S.; Pell, P. Developments to the Nottingham analytical design method for asphalt pavements. In Proceedings of the 6th International Conference on Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, MI, USA, 13–17 July 1987; Volume 1, pp. 366–377. Available online: https://trid.trb.org/view.aspx?id=281217 (accessed on 2 February 2020).
- Asphalt Institute. Thickness Design: Asphalt Pavements for Highways and Streets, 10th ed.; Asphalt Institute: Lexington, KY, USA, 2011; pp. 1–98. [Google Scholar]
- IP. Available online: http://www.estradasdeportugal.pt/ (accessed on 5 October 2020).
- IP. Pavement Construction Specifications; Estradas de Portugal, SA: Lisbon, Portugal, 2014; pp. 1–211. Available online: https://www.infraestruturasdeportugal.pt/sites/default/files/cet/14_03_set_2014.pdf (accessed on 2 February 2020). (In Portuguese)
- MOPTC. Portuguese Law No. 110/2009 of 18 of May, Daily of the Republic; 1st Series; Ministry of Public Works, Transports and Communications: Lisbon, Portugal, 2009; pp. 3061–3099. Available online: http://www.utap.pt/Publicacoes_utap/110-2009.pdf (accessed on 3 February 2020). (In Portuguese)
- Santos, J.; Ferreira, A.; Flintsch, G.; Cerezo, V. A multi-objective optimization approach for sustainable pavement management. Struct. Infrastruct. Eng. 2018, 14, 854–868. [Google Scholar] [CrossRef]
Month | Day | Year | Sunrise | Sunset | Solar Radiation |
---|---|---|---|---|---|
5 | 6 | 2018 | 6.56667 | 20.5500 | 3548.76 |
Hour | Temperature (°F) | Precipitation (in) | Wind speed (mph) | Clear sky (%) | Depth of the groundwater level (ft) |
0 | 55.4 | 0.00 | 1.6 | 100 | 50 |
1 | 54.5 | 0.00 | 0.7 | 100 | 50 |
… | … | … | … | … | … |
23 | 57.7 | 0.02 | 0.2 | 0 | 50 |
… | … | … | … | … | … |
Traffic | Foundation | Pavement | |||||
---|---|---|---|---|---|---|---|
Class | AADTT | Traffic Growth Rate | Truck Factor | Heavy Trucks (20 Years) | Class | E (MPa) | Class |
T6 | 150 | 3% | 2 | 1.47 × 106 | F2 | 60 | P3 |
150 | 3% | 2 | 1.47 × 106 | F3 | 100 | P2 | |
150 | 3% | 2 | 1.47 × 106 | F4 | 150 | P1 | |
T5 | 300 | 3% | 3 | 2.94 × 106 | F2 | 60 | P7 |
300 | 3% | 3 | 2.94 × 106 | F3 | 100 | P4 | |
300 | 3% | 3 | 2.94 × 106 | F4 | 150 | P3 | |
T4 | 500 | 4% | 4 | 5.44 × 106 | F2 | 60 | P11 |
500 | 4% | 4 | 5.44 × 106 | F3 | 100 | P6 | |
500 | 4% | 4 | 5.44 × 106 | F4 | 150 | P5 | |
T3 | 800 | 4% | 4.5 | 8.70 × 106 | F2 | 60 | P13 |
800 | 4% | 4.5 | 8.70 × 106 | F3 | 100 | P9 | |
800 | 4% | 4.5 | 8.70 × 106 | F4 | 150 | P8 | |
T2 | 1200 | 5% | 5 | 1.45 × 107 | F2 | 60 | P15 |
1200 | 5% | 5 | 1.45 × 107 | F3 | 100 | P12 | |
1200 | 5% | 5 | 1.45 × 107 | F4 | 150 | P10 | |
T1 | 2000 | 5% | 5.5 | 2.42 × 107 | F2 | 60 | P16 |
2000 | 5% | 5.5 | 2.42 × 107 | F3 | 100 | P14 | |
2000 | 5% | 5.5 | 2.42 × 107 | F4 | 150 | P12 |
Longitudinal Cracking (m/km) | Alligator Cracking (%) | AC Rutting (mm) | Total Rutting (mm) | IRI (mm/km) |
---|---|---|---|---|
200 | 20 | 15 | 20 | 2000 (in 50% of the length) 3000 (in 80% of the length) 3500 (in 100% of the length) |
Traffic Class | Foundation Class | Pavement Class | Longitudinal Cracking (m/km) | Alligator Cracking (%) | AC Rutting (mm) | Total Rutting (mm) | IRI (mm/km) |
---|---|---|---|---|---|---|---|
F2 | P3 | 14.1 | 0.81 | 5.1 | 12.1 | 1578 | |
T6 | F3 | P2 | 23.9 | 2.11 | 5.8 | 12.0 | 1591 |
F4 | P1 | 16.0 | 2.91 | 5.9 | 11.5 | 1589 | |
F2 | P7 | 4.6 | 0.40 | 7.1 | 13.4 | 1605 | |
T5 | F3 | P4 | 23.1 | 0.82 | 7.6 | 12.8 | 1594 |
F4 | P3 | 29.4 | 1.16 | 7.7 | 12.2 | 1583 | |
F2 | P11 | 3.0 | 0.41 | 9.1 | 15.2 | 1651 | |
T4 | F3 | P6 | 24.4 | 0.78 | 10.8 | 15.8 | 1670 |
F4 | P5 | 40.7 | 1.05 | 11.3 | 15.5 | 1665 | |
F2 | P13 | 1.8 | 0.38 | 10.8 | 16.7 | 1687 | |
T3 | F3 | P9 | 16.8 | 0.64 | 12.5 | 17.3 | 1705 |
F4 | P8 | 36.4 | 0.82 | 13.3 | 17.3 | 1706 | |
F2 | P15 | 1.0 | 0.43 | 9.9 | 15.8 | 1665 | |
T2 | F3 | P12 | 11.2 | 0.79 | 10.7 | 16.3 | 1689 |
F4 | P10 | 33.9 | 0.98 | 12.4 | 17.0 | 1718 | |
F2 | P16 | 1.1 | 0.52 | 11.2 | 17.0 | 1697 | |
T1 | F3 | P14 | 11.9 | 0.76 | 14.5 | 19.1 | 1750 |
F4 | P12 | 35.4 | 0.90 | 15.8 | 19.7 | 1765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justo-Silva, R.; Simões, F.; Ferreira, A. Mechanical-Empirical Pavement Design Guide Applied to Portuguese Pavement Structures. Appl. Sci. 2022, 12, 5656. https://doi.org/10.3390/app12115656
Justo-Silva R, Simões F, Ferreira A. Mechanical-Empirical Pavement Design Guide Applied to Portuguese Pavement Structures. Applied Sciences. 2022; 12(11):5656. https://doi.org/10.3390/app12115656
Chicago/Turabian StyleJusto-Silva, Rita, Fábio Simões, and Adelino Ferreira. 2022. "Mechanical-Empirical Pavement Design Guide Applied to Portuguese Pavement Structures" Applied Sciences 12, no. 11: 5656. https://doi.org/10.3390/app12115656
APA StyleJusto-Silva, R., Simões, F., & Ferreira, A. (2022). Mechanical-Empirical Pavement Design Guide Applied to Portuguese Pavement Structures. Applied Sciences, 12(11), 5656. https://doi.org/10.3390/app12115656