Atmospheric Propagation Studies and Development of New Instrumentation for Astronomy, Radar, and Telecommunication Applications in the Subterahertz Frequency Range
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods and Hardware for Application of subTHz Instruments
2.1. Gyrotrons: High-Power subTHz Sources and Amplifiers
- Use of radar installations for identifying the positions of space debris, the volume of which has been dramatically increasing in the near-Earth orbits in recent years, and also for scanning the lunar and planetary surfaces [27,28] from the Earth (ground-based low-power radar may have some other applications in addition to the above).
- Telecommunications. Interplanetary and deep-space missions, like flights to Mars and Venus, and the L2 missions, require high-performance space communications [4,28], which will be bound to use the THz range. Here, some old projects of sending messages from the Earth to extraterrestrial civilizations come to one’s mind [24], but even short-term prospects of a new generation of terrestrial mobile communications, such as 7G, imply the use of THz waves: 7G is expected to distribute signals between mobile consumers at frequencies of about 0.7 THz [5], while the exchange between cells will be organized via fiber-optic links.
- There are currently more exotic projects of using powerful microwave beams sent through the atmosphere not as information carriers, but as energy transport means, as contrasted with the first two cases. The examples that have appeared over recent years in the THz community include power supplied from the Earth to a spacecraft for propulsion [25] and power supplied from near-Earth solar power stations to terrestrial consumers via powerful microwave beams [26].
2.2. Receivers, Antennas, and the Atmosphere as Critical Factors of subTHz Systems
2.3. Prospects for Gyrotrons on the Suffa Antenna for Radar and Telecommunication Applications
3. Results of Studying Atmospheric Propagation of subTHz Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebe, H.J. Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. J. Quant. Spectrosc. Radiat. Transfer. 1992, 48, 629–643. [Google Scholar] [CrossRef]
- Atacama Large Millimeter Array. Available online: https://www.almaobservatory.org/en/home/ (accessed on 10 October 2021).
- Raymond, A.W.; Palumbo, D.; Paine, S.N.; Blackburn, L.; Rosado, R.C.; Doeleman, S.S.; Farah, J.R.; Johnson, M.D.; Roelofs, F.; Tilanus, R.P.J.; et al. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl. Ser. 2021, 253, 5. [Google Scholar] [CrossRef]
- Vdovin, V.F.; Grachev, V.G.; Dryagin, S.Y.; Eliseev, A.I.; Kamaletdinov, R.K.; Korotaev, D.V.; Lesnov, I.V.; Mansfeld, M.A.; Pevzner, E.L.; Perminov, V.G.; et al. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems. Astrophys. Bull. 2016, 71, 125–128. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Tolkachev, A.A.; Yegorov, E.N.; Shishlov, A.V. Radar and communication systems: Some trends of development. In Proceedings of the NATO Advanced Research Workshop on Quasi-Optical Control of Intense Microwave Transmission, Novgorod, Russia, 17–20 February 2005; pp. 353–370. [Google Scholar]
- Kempkes, M.A.; Hawkey, T.J.; Gaudreau, M.P.J.; Phillips, R.A. W-Band Transmitter Upgrade for the Haystack UltraWideband Satellite Imaging Radar (HUSIR). In Proceedings of the 2006 IEEE International Vacuum Electronics Conference, Monterey, CA, USA, 25–27 April 2006. [Google Scholar] [CrossRef]
- Linde, G.J.; Ngo, M.T.; Danly, B.G.; Cheung, W.J.; Gregers-Hansen, V. WARLOC: A high-power coherent 94 GHz radar. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1102–1117. [Google Scholar] [CrossRef]
- Skolnik, M.I. Radar Handbook; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Blank, M.; Borchard, P.; Cauffman, S.; Felch, K. Development and demonstration of a broadband W-band gyro-TWT amplifier. In Proceedings of the Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, USA, 19–23 September 2005; Volume 2, pp. 652–653. [Google Scholar] [CrossRef]
- Artemenko, Y.N.; Balega, Y.Y.; Baryshev, A.M.; Zinchenko, I.I.; Vdovin, V.F. New stage of the Suffa submm observatory in Uzbekistan project. In Proceedings of the ISSTT 2019—30th International Symposium on Space Terahertz Technology, Proceedings Book, Gothenburg, Sweden, 15–17 April 2019; pp. 196–201. Available online: https://www.nrao.edu/meetings/isstt/papers/2019/2019196201.pdf (accessed on 22 March 2022).
- Samsonov, S.; Denisov, G.; Bratman, V.; Bogdashov, A.; Glyavin, M.; Luchinin, A.; Lygin, V.; Thumm, M. Frequency-Tunable CW Gyro-BWO with a Helically Rippled Operating Waveguide. IEEE Trans. Plasma Sci. 2004, 32, 884–889. [Google Scholar] [CrossRef]
- Thumm, M. State-of-the-Art of High-Power Gyro-Devices. Update of Experimental Results 2021; Kit Scientific Reports 7761; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2021. [Google Scholar] [CrossRef]
- Advanced Fusion Research Center, Japan. Available online: https://kyushu-u.pure.elsevier.com/en/organisations/advanced-fusion-research-center-2 (accessed on 22 March 2022).
- Brunetti, G.; Dell’Olio, F.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Ultra-Compact Tuneable Notch Filter Using Silicon Photonic Crystal Ring Resonator. J. Light. Technol. 2019, 37, 2970–2980. [Google Scholar] [CrossRef]
- Mohammadhoseini, H.; Ghelfi, P.; Desoete, B.; Gabrielli, S.; Otto, T.; Mohammad, A.W.; Roeloffzen, C.; van Dijk, P.; Reza, M.; Serafino, G.; et al. Advancement of photonic integration technology for space applications: A x-band scan-on-receive synthetic aperture radar receiver with electro-photonic beamforming and frequency down-conversion capability. In Proceedings of the International Conference on Space Optics—ICSO 2020, Virtual, 30 March–2 April 2021; International Society for Optics and Photonics: Washington, DC, USA, 2020; Volume 11852, p. 118522W. [Google Scholar] [CrossRef]
- Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Picq, M.; Sotom, M.; Aveline, M. Flexible photonic payload for broadband telecom satellites: From concepts to system demonstrators. In Proceedings of the International Conference on Space Optics—ICSO 2016, Biarritz, France, 18–21 October 2016; International Society for Optics and Photonics: Washington, DC, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Litvak, A.G.; Denisov, G.G.; Glyavin, M.Y. Russian Gyrotrons: Achievements and Trends. IEEE J. Microw. 2021, 1, 260–268. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Chirkov, A.V.; Denisov, G.G.; Fokin, A.P.; Kholoptsev, V.V.; Kuftin, A.N.; Luchinin, A.G.; Golubyatnikov, G.Y.; Malygin, V.I.; Morozkin, M.V.; et al. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media. Rev. Sci. Instrum. 2018, 86, 054705. [Google Scholar] [CrossRef]
- Samsonov, S.V.; Gachev, I.G.; Denisov, G.G.; Bogdashov, A.A.; Mishakin, S.V.; Fiks, A.S.; Soluyanova, E.A.; Tai, E.M.; Dominyuk, Y.V.; Levitan, B.A.; et al. Ka-band Gyrotron Traveling-Wave Tubes with the Highest Continuous-Wave and Average Power. IEEE Trans. Electr. Dev. 2014, 61, 4264–4268. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Kuftin, A.N.; Venediktov, N.P.; Zapevalov, V.E. Experimental investigation of a 110 GHz/1 MW gyrotron with the one-step depressed collector. Int. J. Infrared Millim. Waves 1997, 18, 2129–2136. [Google Scholar] [CrossRef]
- Morozkin, M.V.; Glyavin, M.Y.; Denisov, G.G.; Luchinin, A.G. A High-Efficiency Second-Harmonic Gyrotron with a Depressed Collector. Int. J. Infrared Millim. Waves 2008, 29, 1004–1010. [Google Scholar] [CrossRef]
- Balega, Y.Y.; Baryshev, A.M.; Bubnov, G.M.; Vdovin, V.F.; Vdovichev, S.N.; Gunbina, A.A.; Dmitriev, P.N.; Dubrovich, V.K.; Zinchenko, I.I.; Koshelets, V.P.; et al. Superconducting Receivers for Space, Balloon, and Ground-Based Sub-Terahertz Radio Telescopes. Radiophys. Quantum Electron. 2021, 63, 479–500. [Google Scholar] [CrossRef]
- Benford, J.N.; Benford, D.J. Power beaming leakage radiation as a seti observable. Astrophys. J. Lett. 2016, 825, 101. [Google Scholar] [CrossRef] [Green Version]
- Parkin, K.L.G. The Microwave Thermal Thruster and Its Application to the Launch Problem. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2006. Available online: https://resolver.caltech.edu/CaltechETD:etd-06022006-160023 (accessed on 22 March 2022).
- Space-Based Solar Power. Available online: https://en.wikipedia.org/wiki/Space-based_solar_power (accessed on 22 March 2022).
- Vdovin, V.; Lesnov, I.; Kovalev, F.; Bubnov, G.; Fokin, A.; Tsvetkov, A.; Gospodchikov, E.; Mocheneva, O.; Lubyako, L.; Petelin, M.; et al. An estimation of high-power sub-THz gyrotron based system for space debris detection and Moon scanning. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Cengdu, China, 29 August–3 September 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Bubnov, G.; Gunbina, A.; Lesnov, I.; Mansfeld, M.; Kovalev, F.; Alekseev, R.; Korobeynikova, A.; Vdovichev, S.; Vdovin, V. Development and research of sub-terahertz astronomy and telecommunication equipment. J. Phys. Conf. Ser. 2020, 2300, 020013. [Google Scholar] [CrossRef]
- Paiella, A.; Ade, P.A.R.; Battistelli, E.S.; Castellano, M.G.; Colantoni, I.; Columbro, F.; Coppolecchia, A.; D’Alessandro, G.; de Bernardis, P.; De Petris, M.; et al. In-Flight Performance of the LEKIDs of the OLIMPO Experiment. J. Low Temp. Phys. 2020, 199, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Large Millimeter Telescope Observatory. Available online: http://lmtserver.astro.umass.edu/lmto.html (accessed on 22 March 2022).
- Nosov, V.I.; Bolshakov, O.S.; Bubnov, G.; Vdovin, V.F.; Zinchenko, I.I.; Marukhno, A.S.; Nikiforov, P.L.; Fedoseev, L.I.; Shvetsov, A. A dual-wave atmosphere transparency radiometer of the millimeter wave range. Instrum. Exp. Tech. 2016, 59, 374–380. [Google Scholar] [CrossRef]
- Bubnov, G. Astroclimate Measurements on Several Points Over Eastern Hemisphere In 2-Mm and 3-Millimeter Atmospheric Transparency Windows Using Tipping Radiometer. Available online: https://zenodo.org/record/4973548 (accessed on 19 June 2021).
- Balega, Y.Y.; Bataev, D.K.-S.; Bubnov, G.M.; Vdovin, V.F.; Zemlyanukha, P.M.; Lolaev, A.B.; Lesnov, I.V.; Marukhno, A.S.; Marukhno, N.A.; Murtazaev, A.K.; et al. Direct Measurements of Atmospheric Absorption of Subterahertz Waves in the Northern Caucasus. Dokl. Phys. 2022, 67, 1–4. [Google Scholar] [CrossRef]
- Guo, W.; Xin, M.; Wang, Z.; Yao, Y.; Hu, Z.; Song, W.; Yu, K.; Chen, Y.; Wang, X.; Guan, P.; et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bubnov, G.M.; Abashin, E.B.; Balega, Y.Y.; Bolshakov, O.S.; Dryagin, S.Y.; Dubrovich, V.K.; Marukhno, A.S.; Nosov, V.I.; Vdovin, V.F.; Zinchenko, I.I. Searching for new sites for THz observations in Eurasia. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 64–72. [Google Scholar] [CrossRef]
- Voyager. Available online: https://voyager.jpl.nasa.gov/ (accessed on 10 October 2021).
- Ddescanso.jpl. Available online: https://descanso.jpl.nasa.gov/monograph/series10/Reid_DESCANSO_sml-110804.pdf (accessed on 22 March 2022).
- Tarasov, M.; Gunbina, A.; Chekushkin, A.; Vdovin, V.; Kalaboukhov, A. Arrays of Sub-Terahertz Cryogenic Metamaterial. Appl. Sci. 2021, 11, 9649. [Google Scholar] [CrossRef]
- Bubnov, G.M.; Marukhno, A.S.; Mingaliev, M.G.; Markova, A.P.; Shatsky, N.I.; Voziakova, O.V.; Vdovin, V.F.; Zemlyanukha, P.M.; Zinchenko, I.I. Millimeter-wave astroclimate studies in the North Caucasus: Expedition and first results. In Proceedings of the Terahertz and Microwave Radiation: Generation, Detection and Applications (TERA-2020), Tomsk, Russia, 24–26 August 2020; p. 54. Available online: http://tera2020.tsu.ru/wp-content/uploads/2020/08/TERA_2020_abstracts.pdf (accessed on 22 March 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balega, Y.; Bubnov, G.; Glyavin, M.; Gunbina, A.; Danilevsky, D.; Denisov, G.; Khudchenko, A.; Lesnov, I.; Marukhno, A.; Mineev, K.; et al. Atmospheric Propagation Studies and Development of New Instrumentation for Astronomy, Radar, and Telecommunication Applications in the Subterahertz Frequency Range. Appl. Sci. 2022, 12, 5670. https://doi.org/10.3390/app12115670
Balega Y, Bubnov G, Glyavin M, Gunbina A, Danilevsky D, Denisov G, Khudchenko A, Lesnov I, Marukhno A, Mineev K, et al. Atmospheric Propagation Studies and Development of New Instrumentation for Astronomy, Radar, and Telecommunication Applications in the Subterahertz Frequency Range. Applied Sciences. 2022; 12(11):5670. https://doi.org/10.3390/app12115670
Chicago/Turabian StyleBalega, Yurii, Gregory Bubnov, Mikhail Glyavin, Aleksandra Gunbina, Dmitry Danilevsky, Grigory Denisov, Andrey Khudchenko, Ilya Lesnov, Andrey Marukhno, Kirill Mineev, and et al. 2022. "Atmospheric Propagation Studies and Development of New Instrumentation for Astronomy, Radar, and Telecommunication Applications in the Subterahertz Frequency Range" Applied Sciences 12, no. 11: 5670. https://doi.org/10.3390/app12115670
APA StyleBalega, Y., Bubnov, G., Glyavin, M., Gunbina, A., Danilevsky, D., Denisov, G., Khudchenko, A., Lesnov, I., Marukhno, A., Mineev, K., Samsonov, S., Shanin, G., & Vdovin, V. (2022). Atmospheric Propagation Studies and Development of New Instrumentation for Astronomy, Radar, and Telecommunication Applications in the Subterahertz Frequency Range. Applied Sciences, 12(11), 5670. https://doi.org/10.3390/app12115670