Architectural Experiment Design of Solar Energy Harvesting: A Kinetic Façade System for Educational Facilities
Abstract
:1. Introduction
2. Research Scope and Subject
2.1. Educational Facilities in South Korea
2.2. Research Subjects
3. Kinetic Façade Design and Operating Concept
3.1. Solar Energy Harvesting
3.2. Study of Solar Radiation for Installation of Solar Panels
3.3. Optimal Tilt Angle (βo) of Solar Panel for Maximal Energy Generation
3.4. Solar Panel Design According to Optomal Tilt Angle (βo)
3.5. Kinetic Façade System Design and Solar Energy Generation
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gatto, A.; Drago, C. When renewable energy, empowerment, and entrepreneurship connect: Measuring energy policy effectiveness in 230 countries. Energy Res. Soc. Sci. 2021, 78, 101977. [Google Scholar] [CrossRef]
- Pischke, E.C.; Solomon, B.; Wellstead, A.; Acevedo, A.; Eastmond, A.; De Oliveira, F.; Coelho, S.; Lucon, O. From Kyoto to Paris: Measuring renewable energy policy regimes in Argentina, Brazil, Canada, Mexico and the United States. Energy Res. Soc. Sci. 2019, 50, 82–91. [Google Scholar] [CrossRef]
- Horstink, L.; Wittmayer, J.M.; Ng, K. Pluralising the European energy landscape: Collective renewable energy prosumers and the EU's clean energy vision. Energy Policy 2021, 153, 112262. [Google Scholar] [CrossRef]
- International Energy Agency. Available online: https://www.iea.org/topics/buildings (accessed on 2 April 2022).
- Kennedy, K.M.; Ruggles, T.H.; Rinaldi, K.; Dowling, J.A.; Duan, L.; Caldeira, K.; Lewis, N.S. The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy. Adv. Appl. Energy 2022, 6, 100091. [Google Scholar] [CrossRef]
- Zhao, L.C.; Zou, H.X.; Yan, G.; Liu, F.R.; Tan, T.; Zhang, W.M.; Peng, Z.K.; Meng, G. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Appl. Energy 2019, 239, 735–746. [Google Scholar] [CrossRef]
- Zhao, L.C.; Zou, H.X.; Wu, Z.Y.; Gao, Q.H.; Yan, G.; Liu, F.R.; Wei, K.X.; Zhang, W.M. Dynamically synergistic regulation mechanism for rotation energy harvesting. Mech. Syst. Signal Process. 2022, 169, 108637. [Google Scholar] [CrossRef]
- Statistics Korea Government Official Work Conference. Available online: https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1537 (accessed on 5 April 2022).
- Lee, S.M. Utilization Plan of School Facility Data to Improve the Educational Environment; Korean Educational Development Institute: Sejong, Korea, 2018; p. 33. [Google Scholar]
- Kim, S.G. The Effect of Changes in Outdoor Spatial Design on the Space-Use Behavior of Student, after the Abolishment of Standard Design Model for Elementary School. Master’s Thesis, Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, Korea, 1 August 2016. [Google Scholar]
- Statistics Korea. Available online: https://index.go.kr/potal/stts/idxMain/selectPoSttsIdxMainPrint.do?idx_cd=1538&board_cd=INDX_001 (accessed on 14 May 2022).
- Schoolinfo. Available online: https://www.schoolinfo.go.kr/ei/ss/Pneiss_f01_l0.do (accessed on 11 May 2022).
- Schoolinfo. Available online: https://www.schoolinfo.go.kr/ei/ss/Pneiss_b01_s0.do?GS_CD=S020000660 (accessed on 14 May 2022).
- Elvin, N.; Erturk, A. Advances in Energy Harvesting Methods; Springer Science & Business Media: New York, NY, USA, 2013; p. 3. [Google Scholar]
- Hao, D.; Qi, L.; Tairab, A.M.; Ahmed, A.; Azam, A.; Luo, D.; Pan, Y.; Zhang, Z.; Yan, J. Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renew. Energy 2022, 188, 678–697. [Google Scholar] [CrossRef]
- Yin, H.M.; Yang, D.J.; Kelly, G.; Garant, J. Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings. Sol. Energy 2013, 87, 184–195. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; You, Z. Optimization design and simulation of a multi-source energy harvester based on solar and radioisotope energy sources. Micromachines 2016, 7, 228. [Google Scholar] [CrossRef] [Green Version]
- Bangash, K.A.; Kazmi, S.A.A.; Farooq, W.; Ayub, S.; Musarat, M.A.; Alaloul, W.S.; Javed, M.F.; Mosavi, A. Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines 2021, 12, 518. [Google Scholar] [CrossRef]
- Lu, C.; Raghunathan, V.; Roy, K. Efficient design of micro-scale energy harvesting systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011, 1, 254–266. [Google Scholar] [CrossRef]
- Reinberg, G.W. Architecture for a Solar Future; Birkhauser: Basel, Switzerland, 2021; pp. 13–17. [Google Scholar]
- Bott, H.; Grassl, G.; Anders, S. Sustainable Urban Planning; Edition Detail: Berlin, Germany, 2019; p. 201. [Google Scholar]
- Brophy, V.; Lewis, J.O. A Green Vitruvius; Routledge: London, UK, 2011; pp. 65–70. [Google Scholar]
- Wong, P.W.; Shimoda, Y.; Nonaka, M.; Inoue, M.; Mizuno, M. Semi-transparent PV: Thermal performance, power generation, daylight modelling and energy saving potential in a residential application. Renew. Energy 2008, 33, 1024–1036. [Google Scholar] [CrossRef]
- Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E. Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: Experimental investigation. Heliyon 2021, 7, e07920. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E.; Yaqoob, S.J. Experimental Investigation of the Effect of a Combination of Active and Passive Cooling Mechanism on the Thermal Characteristics and Efficiency of Solar PV Module. Inventions 2021, 6, 63. [Google Scholar] [CrossRef]
- Vasiliev, M.; Nur-E-Alam, M.; Alameh, K. Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation. Energies 2019, 12, 1080. [Google Scholar] [CrossRef] [Green Version]
- Didoné, E.L.; Wagner, A. Semi-transparent PV windows: A study for office buildings in Brazil. Energy Build. 2013, 67, 136–142. [Google Scholar] [CrossRef]
- Tablada, A.; Kosoric, V.; Lau, S.K.; Lau, S.; Yuan, S. Productive facade systems for energy and food harvesting: Prototype optimisation framework. In Proceedings of the 33rd Passive Low Energy Architecture Conference (PLEA), Edinburgh, UK, 9 July 2017. [Google Scholar]
- Yoon, S.D.; Vuthy, S.; Choi, H.S. Design of Solar Modules for Building Façades at Educational Facilities in Korea. Energies 2021, 14, 2441. [Google Scholar] [CrossRef]
- Sanguinetti, P.; Abdelmohsen, S.; Lee, J.M.; Lee, J.K.; Sheward, H.; Eastman, C. General system architecture for BIM: An integrated approach for design and analysis. Adv. Eng. Inf. 2012, 26, 317–333. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.; Hampson, K. Trends and opportunities of BIM-GIS integration in the architecture, engineering and construction industry: A review from a spatio-temporal statistical perspective. ISPRS Int. J. Geo-Inf. 2017, 6, 397. [Google Scholar] [CrossRef] [Green Version]
- Eastman, C.; Fisher, D.; Lafue, G.; Lividini, J.; Stoker, D.; Yessios, C. An Outline of the Building Description System. Instit. Phys. Plan. Res. Rep. 1974, 50, 4. [Google Scholar]
- van Nederveen, G.A.; Tolman, F.P. Modelling multiple views on buildings. Autom. Constr. 1992, 1, 215–224. [Google Scholar] [CrossRef]
- Revit Software. Available online: https://www.autodesk.com/products/revit/overview?plc=RVT&term=1-YEAR&support=ADVANCED&quantity=1 (accessed on 2 March 2022).
- Insight Software. Available online: https://www.autodesk.com/products/insight/overview (accessed on 30 March 2022).
- Calabrò, E. An algorithm to determine the optimum tilt angle of a solar panel from global horizontal solar radiation. J. Renew. Energy 2013, 2013, 307547. [Google Scholar] [CrossRef] [Green Version]
- Yarramsetty, S.; Rohullah, M.S.; Sivakumar, M. An investigation on energy consumption in residential building with different orientation: A BIM approach. Asian J. Civ. Eng. 2020, 21, 253–266. [Google Scholar] [CrossRef]
- Hanwha Q CELLS’. Available online: https://qcells.com/kr/get-started/complete-energy-solution/solar-panel-detail?slrPnlId=SRPL211201070624003&look=003 (accessed on 7 March 2022).
Category | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|
Elementary school | 6040 | 6064 | 6087 | 6120 | 6157 |
Middle school | 3213 | 3214 | 3214 | 3223 | 3245 |
High school | 2360 | 2358 | 2356 | 2367 | 2375 |
Month | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Solar declination (deg) | −21.269° | −13.289° | −2.819° | 9.415° | 18.792° | 23.314° | 21.517° | 13.784° | 2.217° | −9.599° | −19.148° | −23.335° |
a1 | 31.33 | 16.25 | 6.80 | −6.07 | −14.95 | −19.27 | −15.65 | −4.23 | 6.42 | 15.84 | 23.61 | 30.56 |
a2 | 0.68 | 0.86 | 0.84 | 0.87 | 0.87 | 0.87 | 0.83 | 0.75 | 0.77 | 0.83 | 0.84 | 0.76 |
Seoul. βo (deg) | 57° | 49° | 38° | 27° | 18° | 13° | 16° | 24° | 35° | 47° | 55° | 59° |
Busan. βo (deg) | 55° | 47° | 35° | 24° | 16° | 11° | 14° | 22° | 34° | 45° | 53° | 57° |
Type | Parameter | Value |
---|---|---|
Solar module | Model | Q.PEAK DUO ML-G11.5/BFG |
Length (mm) | 2000 | |
Width (mm) | 1000 | |
Power capacity (kW/unit) | 500 Wp | |
Efficiency (%) | 21% |
Won-Hyo Elementary School in Seoul | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | January | February | March | April | May | June | July | August | September | October | November | December | Total (kWh·Year−1) | |
βo (deg) | 57° | 49° | 38° | 27° | 18° | 13° | 16° | 24° | 35° | 48° | 55° | 59° | ||
Type A (2 m × 1 m) | Total surface area 420 m−2 | 482,289 | 492,432 | 490,076 | 472,775 | 446,618 | 428,713 | 439,793 | 465,352 | 487,650 | 493,277 | 485,885 | 479,129 | 5,663,989 |
Type B (1 m × 2 m) | Total surface area 800 m−2 | 888,354 | 894,496 | 881,317 | 837,777 | 779,963 | 741,741 | 762,753 | 819,075 | 870,400 | 895,327 | 889,141 | 883,338 | 10,143,682 |
Cho-Rang Elementary school in Busan | ||||||||||||||
Month | January | February | March | April | May | June | July | August | September | October | November | December | Total (kWh·Year−1) | |
βo (deg) | 55° | 47° | 35° | 24° | 16° | 11° | 14° | 22° | 34° | 45° | 53° | 57° | ||
Type A (2 m × 1 m) | Total surface area 820 m−2 | 1,026,250 | 1,043,950 | 1,035,148 | 986,746 | 933,387 | 891,238 | 917,938 | 975,667 | 1,030,998 | 1,043,969 | 1,031,271 | 1,031,271 | 11,947,833 |
Type B (1 m × 2 m) | Total surface area 1640 m−2 | 1,963,564 | 1,943,036 | 1,878,020 | 1,780,220 | 1,663,520 | 1,577,378 | 1,627,342 | 1,742,633 | 1,865,792 | 1,934,773 | 1,964,245 | 1,960,333 | 21,900,856 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.S. Architectural Experiment Design of Solar Energy Harvesting: A Kinetic Façade System for Educational Facilities. Appl. Sci. 2022, 12, 5853. https://doi.org/10.3390/app12125853
Choi HS. Architectural Experiment Design of Solar Energy Harvesting: A Kinetic Façade System for Educational Facilities. Applied Sciences. 2022; 12(12):5853. https://doi.org/10.3390/app12125853
Chicago/Turabian StyleChoi, Ho Soon. 2022. "Architectural Experiment Design of Solar Energy Harvesting: A Kinetic Façade System for Educational Facilities" Applied Sciences 12, no. 12: 5853. https://doi.org/10.3390/app12125853
APA StyleChoi, H. S. (2022). Architectural Experiment Design of Solar Energy Harvesting: A Kinetic Façade System for Educational Facilities. Applied Sciences, 12(12), 5853. https://doi.org/10.3390/app12125853