Identifying a Correlation among Qualitative Non-Numeric Parameters in Natural Fish Microbe Dataset Using Machine Learning
Abstract
:1. Introduction
2. Related Works
3. Proposed Framework
3.1. K-Means
3.2. Random Forest
3.3. Association Rule Mining (Apriori)
4. Materials and Methods
4.1. Overview
4.2. Sample Preparation
4.3. Nuclear Magnetic Resonance
4.4. Data Processing
4.5. Data Preprocessing for Analysis and Annotation
4.6. Fish Gut Microbe Analysis by MiSeq
4.7. Data Analysis
4.7.1. i-Means Analysis
4.7.2. Association Rule Mining (Apriori)
5. Results
5.1. Overview
5.2. Association Rules Focused on the Bacterial Data
5.3. Association Rules Focused on NMR Signals
6. Discussion
7. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685. [Google Scholar] [CrossRef] [Green Version]
- Lasken, R.S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 2012, 10, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, M.; Hugenholtz, P.; Skarshewski, A.; Nielsen, K.L.; Tyson, G.W.; Nielsen, P.H. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 2013, 31, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A.; Wernegreen, J.J. Lifestyle evolution in symbiotic bacteria: Insights from genomics. Trends Ecol. Evol. 2000, 15, 321–326. [Google Scholar] [CrossRef]
- Leahy, S.; Higgins, D.; Fitzgerald, G.; Van Sinderen, D. Getting better with bifidobacteria. J. Appl. Microbiol. 2005, 98, 1303–1315. [Google Scholar] [CrossRef]
- Ashida, H.; Ogawa, M.; Kim, M.; Mimuro, H.; Sasakawa, C. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 2012, 8, 36–45. [Google Scholar] [CrossRef]
- Tsutsui, S.; Date, Y.; Kikuchi, J. Visualizing Individual and Region-specific Microbial–metabolite Relations by Important Variable Selection Using Machine Learning Approaches. J. Comput. Aided Chem. 2017, 18, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Sicard, J.-F.; Le Bihan, G.; Vogeleer, P.; Jacques, M.; Harel, J. Interactions of intestinal bacteria with components of the intestinal mucus. Front. Cell. Infect. Microbiol. 2017, 7, 387. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H. Gut microbial short-chain fatty acids in host defense and immune regulation. Inflamm. Regen. 2015, 35, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, P.; Sudo, N.; Dinan, T.; Taylor, V.H.; Bienenstock, J. Mood and gut feelings. Brain Behav. Immun. 2010, 24, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Schnupf, P.; Gaboriau-Routhiau, V.; Gros, M.; Friedman, R.; Moya-Nilges, M.; Nigro, G.; Cerf-Bensussan, N.; Sansonetti, P.J. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 2015, 520, 99–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hase, K.; Kawano, K.; Nochi, T.; Pontes, G.S.; Fukuda, S.; Ebisawa, M.; Kadokura, K.; Tobe, T.; Fujimura, Y.; Kawano, S. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 2009, 462, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Osaka, T.; Moriyama, E.; Arai, S.; Date, Y.; Yagi, J.; Kikuchi, J.; Tsuneda, S. Meta-analysis of fecal microbiota and metabolites in experimental colitic mice during the inflammatory and healing phases. Nutrients 2017, 9, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef] [PubMed]
- Shima, H.; Masuda, S.; Date, Y.; Shino, A.; Tsuboi, Y.; Kajikawa, M.; Inoue, Y.; Kanamoto, T.; Kikuchi, J. Exploring the impact of food on the gut ecosystem based on the combination of machine learning and network visualization. Nutrients 2017, 9, 1307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhao, Y.; Liao, X.; Shi, W.; Li, K.; Zou, Q.; Peng, S. Deep learning in omics: A survey and guideline. Brief. Funct. Genom. 2019, 18, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Shiokawa, Y.; Misawa, T.; Date, Y.; Kikuchi, J. Application of market basket analysis for the visualization of transaction data based on human lifestyle and spectroscopic measurements. Anal. Chem. 2016, 88, 2714–2719. [Google Scholar] [CrossRef]
- Mesiar, R.; Sheikhi, A. Nonlinear random forest classification, a copula-based approach. Appl. Sci. 2021, 11, 7140. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1967; pp. 281–297. [Google Scholar]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng. Open Access J. 2014, 2, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Ma, J.; Shende, N.; Castaneda, G.; Chakladar, J.; Tsai, J.C.; Apostol, L.; Honda, C.O.; Xu, J.; Wong, L.M. Using machine learning of clinical data to diagnose COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Wei, F.; Ito, K.; Sakata, K.; Asakura, T.; Kikuchi, J. Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties. Sci. Rep. 2021, 11, 3766. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Zhang, C. Support vector machines based on K-means clustering for real-time business intelligence systems. Int. J. Bus. Intell. Data Min. 2005, 1, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Arthur, D.; Vassilvitskii, S. k-Means++: The Advantages of Careful Seeding; Stanford University: Stanford, CA, USA, 2006. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases—VLDB, Santiago de Chile, Chile, 12–15 September 1994; pp. 487–499. [Google Scholar]
- Woo, J. Market basket analysis algorithms with mapreduce. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2013, 3, 445–452. [Google Scholar] [CrossRef]
- Date, Y.; Iikura, T.; Yamazawa, A.; Moriya, S.; Kikuchi, J. Metabolic sequences of anaerobic fermentation on glucose-based feeding substrates based on correlation analyses of microbial and metabolite profiling. J. Proteome Res. 2012, 11, 5602–5610. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Fukuchi, M.; Ito, K.; Sakata, K.; Asakura, T.; Date, Y.; Kikuchi, J. Large-scale evaluation of major soluble macromolecular components of fish muscle from a conventional 1H-NMR spectral database. Molecules 2020, 25, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikotun, A.M.; Almutari, M.S.; Ezugwu, A.E. K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions. Appl. Sci. 2021, 11, 11246. [Google Scholar] [CrossRef]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The gut microbiota of marine fish. Front. Microbiol. 2018, 9, 873. [Google Scholar] [CrossRef] [PubMed]
- Stal, L.J.; Bolhuis, H.; Cretoiu, M.S. Phototrophic marine benthic microbiomes: The ecophysiology of these biological entities. Environ. Microbiol. 2019, 21, 1529–1551. [Google Scholar] [CrossRef]
- Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef]
- Askarian, F.; Zhou, Z.; Olsen, R.E.; Sperstad, S.; Ringø, E. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and In Vitro growth inhibition of four fish pathogens. Aquaculture 2012, 326, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Warren, F.J.; Fukuma, N.M.; Mikkelsen, D.; Flanagan, B.M.; Williams, B.A.; Lisle, A.T.; Ó Cuív, P.; Morrison, M.; Gidley, M.J. Food starch structure impacts gut microbiome composition. mSphere 2018, 3, e00086-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albenberg, L.G.; Lewis, J.D.; Wu, G.D. Food and the gut microbiota in IBD: A critical connection. Curr. Opin. Gastroenterol. 2012, 28, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downing, A.B.; Wallace, G.T.; Yancey, P.H. Organic osmolytes of amphipods from littoral to hadal zones: Increases with depth in trimethylamine N-oxide, scyllo-inositol and other potential pressure counteractants. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2018, 138, 1–10. [Google Scholar] [CrossRef]
- Kelly, R.H.; Yancey, P.H. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol. Bull. 1999, 196, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Seibel, B.A.; Walsh, P.J. Trimethylamine oxide accumulation in marine animals: Relationship to acylglycerol storagej. J. Exp. Biol. 2002, 205, 297–306. [Google Scholar] [CrossRef]
- Summers, G.; Wibisono, R.; Hedderley, D.; Fletcher, G. Trimethylamine oxide content and spoilage potential of New Zealand commercial fish species. N. Z. J. Mar. Freshw. Res. 2017, 51, 393–405. [Google Scholar] [CrossRef]
- Yin, X.; Gibbons, H.; Rundle, M.; Frost, G.; McNulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Brennan, L. The Relationship between Fish Intake and Urinary Trimethylamine-N-Oxide. Mol. Nutr. Food Res. 2020, 64, 1900799. [Google Scholar] [CrossRef] [PubMed]
Qualitative Parameters | Observed Number |
---|---|
Bacterial Class 1 (from i-means) | 26 |
Bacterial Class 2 | 93 |
Bacterial Class 3 | 90 |
Body1 (Spindle-shaped) | 64 |
Body2 (Compressed) | 144 |
Body3 (Cubic-shaped) | 81 |
Body4 (Flat-shaped) | 16 |
Body5 (Long, slender) | 14 |
Color1 (Red) | 85 |
Color2 (Blue) | 16 |
Color3 (Yellow) | 10 |
Color4 (Brown) | 75 |
Color5 (Black) | 131 |
Ecology1 (Migratory) | 36 |
Ecology2 (Territorial-staying) | 188 |
Ecology3 (Rockfish) | 66 |
Ecology4 (Demersal fish) | 26 |
Food1 (Plankton eater) | 42 |
Food2 (Herbivore) | 41 |
Food3 (Polychaeta eater) | 150 |
Food4 (Crustacea eater) | 259 |
Food5 (Mollusk eater) | 82 |
Food6 (Fish eater) | 162 |
Habitat1 (Freshwater) | 24 |
Habitat2 (Brackish water) | 22 |
Habitat3 (Coast) | 136 |
Habitat4 (Offshore) | 92 |
Habitat5 (Deep sea) | 48 |
Length1 (50–150 mm) | 94 |
Length2 (150–200 mm) | 97 |
Length3 (200–300 mm) | 88 |
Length4 (Over 300 mm) | 58 |
NMR Class 1 (from i-means) | 192 |
NMR Class 2 | 99 |
NMR Class 3 | 7 |
NMR Class 4 | 11 |
Scales1 (Matte) | 52 |
Scales2 (Glossy) | 133 |
Scales3 (Shiny) | 131 |
Season1 (March–May) | 90 |
Season2 (June–August) | 68 |
Season3 (September–November) | 115 |
Season4 (December–February) | 46 |
Tail1 (Two distinct) | 122 |
Tail2 (Others) | 191 |
Peak Number | Δ1H (ppm) | Δ13C (ppm) | Annotation |
---|---|---|---|
1 | 0.93 | 13.9 | Ile |
2 | 0.946 | 23.7 | Leu |
3 | 0.97 | 19.4 | Val |
4 | 1.001 | 20.6 | Ile |
5 | 1.034 | 20.6 | Val |
6 | 1.319 | 22.2 | Lactate, Thr |
7 | 1.471 | 18.9 | Ala |
8 | 1.701 | 26.7 | Leu |
9 | 1.72 | 29 | Lys |
10 | 1.909 | 25.9 | Acetate |
11 | 1.973 | 38.6 | Ile |
12 | 1.999 | 31.9 | Pro |
13 | 2.045 | 29.7 | Glu |
14 | 2.124 | 29 | Gln |
15 | 2.261 | 31.9 | Val |
16 | 2.339 | 36.2 | Glu |
17 | 2.394 | 36.9 | Succinate |
18 | 2.636 | 31.5 | Met |
19 | 2.677 | 39.4 | Asp |
20 | 2.711 | 37.2 | DMA |
21 | 2.807 | 39.4 | Asp |
22 | 2.876 | 47.4 | TMA |
23 | 3.025 | 39.7 | Creatine |
24 | 3.196 | 56.6 | Choline |
25 | 3.233 | 43.3 | Arg |
26 | 3.223 | 76.9 | Glucose |
27 | 3.258 | 62.3 | TMAO, Taurine |
28 | 3.414 | 38.1 | Taurine |
29 | 3.501 | 70 | Choline |
30 | 3.548 | 44.2 | Gly |
31 | 3.645 | 65.3 | Glycerol |
32 | 3.921 | 56.5 | Creatine |
33 | 3.955 | 63 | Ser |
34 | 4.103 | 71.2 | Lactate |
35 | 4.241 | 68.7 | Thr |
36 | 4.642 | 98.6 | Glucose |
37 | 5.224 | 94.8 | Glucose |
38 | 6.091 | 91.1 | inosine |
39 | 6.887 | 118.6 | Tyr |
40 | 7.108 | 119.8 | His |
41 | 7.181 | 133.4 | Tyr |
42 | 7.265 | 124.8 | Trp |
43 | 7.318 | 131.9 | Phe |
44 | 7.365 | 130.5 | Phe |
45 | 7.412 | 132 | Phe |
46 | 7.518 | 114.6 | Trp |
47 | 7.721 | 121.2 | Trp |
48 | 7.999 | 138.6 | His |
49 | 8.178 | 148.3 | Inosine |
50 | 8.223 | 148.9 | Inosine |
51 | 8.338 | 143 | Inosine |
Source | Target | Support | Confidence | Lift |
---|---|---|---|---|
Bac_class1 | High_Firmicutes | 0.08 | 0.96 | 6.44 |
Ecology2 (Territorial-staying) | 0.06 | 0.77 | 1.29 | |
Food4 (Crustacea-eater) | 0.07 | 0.88 | 1.08 | |
Bac_class2 | High_Actinobacteria | 0.10 | 0.32 | 2.42 |
Low_Bacteria.Other | 0.13 | 0.43 | 1.83 | |
High_Proteobacteria | 0.23 | 0.77 | 1.44 | |
Season3 (September–November) | 0.13 | 0.45 | 1.24 | |
Color5 (Black) | 0.15 | 0.51 | 1.22 | |
Color4 (Brown) | 0.08 | 0.28 | 1.17 | |
Body3 (Cubicshape) | 0.09 | 0.30 | 1.17 | |
Scales3 (Shiny) | 0.14 | 0.47 | 1.14 | |
NMR_class1 | 0.20 | 0.68 | 1.11 | |
Habitat3 (Coast) | 0.14 | 0.46 | 1.07 | |
High_Gln.Malic.acid | 0.17 | 0.57 | 1.07 | |
Tail1 (two-distinct) | 0.12 | 0.41 | 1.05 | |
Length1(50–150 mm) | 0.09 | 0.31 | 1.04 | |
High_Thr | 0.24 | 0.82 | 1.03 | |
High_Ile | 0.29 | 0.99 | 1.01 | |
High_Creatine.G3P.GPC | 0.29 | 0.99 | 1.01 | |
High_Lactate | 0.29 | 0.99 | 1.01 | |
High_Val | 0.29 | 0.99 | 1.01 | |
High_Ile | 0.29 | 0.99 | 1.01 | |
High_Ala | 0.29 | 0.99 | 1.01 | |
High_Gly | 0.29 | 0.99 | 1.01 | |
High_TMAO | 0.29 | 0.99 | 1.01 | |
High_Creatine | 0.29 | 0.99 | 1.01 | |
High_Leu | 0.29 | 0.98 | 1.00 | |
Bac_class3 | Low_Actinobacteria | 0.07 | 0.26 | 2.30 |
Low_Firmicutes | 0.08 | 0.29 | 2.17 | |
Low_Bacteroidetes | 0.10 | 0.34 | 1.78 | |
High_Proteobacteria | 0.26 | 0.90 | 1.68 | |
Body1 (Spindle shaped) | 0.08 | 0.28 | 1.37 | |
Season2 (June–August) | 0.07 | 0.26 | 1.18 | |
Ecology2 (Territorial-staying) | 0.20 | 0.69 | 1.15 | |
Tail1 (two-distinct) | 0.13 | 0.44 | 1.15 | |
Low_Bacteria.Other | 0.08 | 0.27 | 1.14 | |
Length1 (50–150 mm) | 0.10 | 0.33 | 1.12 | |
Habitat4 (Offshore) | 0.09 | 0.32 | 1.10 | |
Food6 (Fish-eater) | 0.16 | 0.57 | 1.10 | |
High_Gln.Malic.acid | 0.17 | 0.58 | 1.08 | |
Color5 (Black) | 0.13 | 0.44 | 1.07 | |
Scales3 (Shiny) | 0.13 | 0.44 | 1.07 | |
NMR_class2 | 0.10 | 0.33 | 1.06 | |
Body2 (Compressed) | 0.14 | 0.48 | 1.05 | |
Season1 (March–May) | 0.08 | 0.29 | 1.01 | |
High_Acetate | 0.26 | 0.92 | 1.00 |
Source | Target | Support | Confidence | Lift |
---|---|---|---|---|
NMR_class1 | Body1 (Spindle-shaped) | 0.17 | 0.27 | 1.33 |
Scales3 (Shiny) | 0.32 | 0.53 | 1.26 | |
Tail1 (Two distinct) | 0.29 | 0.48 | 1.24 | |
Low_Bacteria.Other | 0.17 | 0.28 | 1.18 | |
Color5 (Black) | 0.29 | 0.47 | 1.13 | |
Ecology2 (Territorial-staying) | 0.41 | 0.67 | 1.12 | |
High_Gln.Malic.acid | 0.36 | 0.59 | 1.11 | |
Bac_class2 | 0.20 | 0.33 | 1.11 | |
High_Proteobacteria | 0.36 | 0.58 | 1.09 | |
Food5 (Mollusca eater) | 0.17 | 0.28 | 1.08 | |
Length3 (200–300 mm) | 0.18 | 0.30 | 1.06 | |
Length2 (150–200 mm) | 0.20 | 0.32 | 1.05 | |
Color1 (Red) | 0.17 | 0.28 | 1.04 | |
Season3 (September–November) | 0.23 | 0.38 | 1.03 | |
High_Thr | 0.50 | 0.82 | 1.03 | |
High_Acetate | 0.57 | 0.94 | 1.02 | |
High_Leu | 0.61 | 1.00 | 1.02 | |
High_Ile | 0.61 | 1.00 | 1.02 | |
High_Creatine.G3P.GPC | 0.61 | 1.00 | 1.02 | |
High_Lactate | 0.61 | 1.00 | 1.02 | |
High_Val | 0.61 | 1.00 | 1.02 | |
High_Ile | 0.61 | 1.00 | 1.02 | |
High_Ala | 0.61 | 1.00 | 1.02 | |
High_Gly | 0.61 | 1.00 | 1.02 | |
High_TMAO | 0.61 | 1.00 | 1.02 | |
High_Creatine | 0.61 | 1.00 | 1.02 | |
Food6 (Fish eater) | 0.32 | 0.52 | 1.01 | |
Season1 (March–May) | 0.17 | 0.29 | 1.00 | |
Body2 (Compressed) | 0.28 | 0.46 | 1.00 | |
Food4 (Crustacea eater) | 0.50 | 0.82 | 1.00 | |
NMR_class2 | Color4 (Brown) | 0.12 | 0.39 | 1.65 |
Ecology3 (Rockfish) | 0.10 | 0.32 | 1.54 | |
Scales2 (Glossy) | 0.18 | 0.58 | 1.36 | |
Food3 (Polychaeta eater) | 0.20 | 0.63 | 1.32 | |
Season2 (June–August) | 0.09 | 0.27 | 1.26 | |
Length1 (50–150 mm) | 0.12 | 0.37 | 1.25 | |
Body3 (Cubic-shaped) | 0.10 | 0.31 | 1.22 | |
Tail2 (Others) | 0.23 | 0.74 | 1.22 | |
Habitat4 (Offshore) | 0.10 | 0.32 | 1.11 | |
High_Lactate | 0.14 | 0.44 | 1.09 | |
Habitat3 (Coast) | 0.15 | 0.46 | 1.08 | |
High_Thr | 0.27 | 0.85 | 1.06 | |
High_Acetate | 0.31 | 0.98 | 1.06 | |
Bac_class3 | 0.10 | 0.30 | 1.06 | |
Food4 (Crustacea eater) | 0.27 | 0.87 | 1.06 | |
Length2 (150–200 mm) | 0.10 | 0.32 | 1.05 | |
High_Ile | 0.31 | 1.00 | 1.02 | |
High_Creatine.G3P.GPC | 0.31 | 1.00 | 1.02 | |
High_Lactate | 0.31 | 1.00 | 1.02 | |
High_Val | 0.31 | 1.00 | 1.02 | |
High_Ile | 0.31 | 1.00 | 1.02 | |
High_Ala | 0.31 | 1.00 | 1.02 | |
High_Gly | 0.31 | 1.00 | 1.02 | |
High_TMAO | 0.31 | 1.00 | 1.02 | |
High_Creatine | 0.31 | 1.00 | 1.02 | |
Body2 (Compressed) | 0.15 | 0.46 | 1.02 | |
High_Leu | 0.31 | 0.99 | 1.01 |
Source | Target | Support | Confidence | Lift |
---|---|---|---|---|
Body1 (Spindle-shaped) | High_TMAO | 0.20 | 1.00 | 1.02 |
Body3 (Cubic-shaped) | 0.26 | 1.00 | 1.02 | |
Color4 (Brown) | 0.24 | 1.00 | 1.02 | |
Ecology1 (Migratory) | 0.11 | 1.00 | 1.02 | |
Ecology4 (Demersal fish) | 0.08 | 1.00 | 1.02 | |
Food1 (Plankton eater) | 0.13 | 1.00 | 1.02 | |
Habitat2 (Brackish water) | 0.07 | 1.00 | 1.02 | |
Habitat5 (Deep sea) | 0.15 | 1.00 | 1.02 | |
High_Acetate | 0.92 | 1.00 | 1.02 | |
High_Ala | 0.98 | 1.00 | 1.02 | |
High_Creatine | 0.98 | 1.00 | 1.02 | |
High_Creatine.G3GPC | 0.98 | 1.00 | 1.02 | |
High_Gln.Malic.acid | 0.53 | 1.00 | 1.02 | |
High_Gly | 0.98 | 1.00 | 1.02 | |
High_Ile | 0.98 | 1.00 | 1.02 | |
High_Ile | 0.98 | 1.00 | 1.02 | |
High_Lactate | 0.41 | 1.00 | 1.02 | |
High_Lactate | 0.98 | 1.00 | 1.02 | |
High_Leu | 0.98 | 1.00 | 1.02 | |
High_malic.acid | 0.16 | 1.00 | 1.02 | |
High_Thr | 0.80 | 1.00 | 1.02 | |
High_Val | 0.98 | 1.00 | 1.02 | |
Length2 (150–200 mm) | 0.31 | 1.00 | 1.02 | |
Low_Actinobacteria | 0.11 | 1.00 | 1.02 | |
Low_Cyanobacteria | 0.09 | 1.00 | 1.02 | |
Low_Fusobacteria | 0.08 | 1.00 | 1.02 | |
Low_Ile | 0.09 | 1.00 | 1.02 | |
Low_Planctomycetes | 0.11 | 1.00 | 1.02 | |
Low_Tenericutes | 0.07 | 1.00 | 1.02 | |
Low_Tyr | 0.11 | 1.00 | 1.02 | |
NMRclass1 | 0.61 | 1.00 | 1.02 | |
NMRclass2 | 0.31 | 1.00 | 1.02 | |
Scales1 (Matte) | 0.17 | 1.00 | 1.02 | |
Season2 (June–August) | 0.22 | 1.00 | 1.02 | |
Season4 (December–February) | 0.15 | 1.00 | 1.02 | |
Food6 (Fish eater) | 0.51 | 0.99 | 1.01 | |
Tail1 (Two distinct) | 0.38 | 0.99 | 1.01 | |
Season3 (September–November) | 0.36 | 0.99 | 1.01 | |
Length1 (50–150 mm) | 0.30 | 0.99 | 1.01 | |
Bac_class2 | 0.29 | 0.99 | 1.01 | |
Habitat4 (Offshore) | 0.29 | 0.99 | 1.01 | |
Color1 (Red) | 0.27 | 0.99 | 1.01 | |
Food5 (Mollusca eater) | 0.26 | 0.99 | 1.01 | |
Low_Bacteria.Other | 0.23 | 0.99 | 1.01 | |
Habitat3 (Coast) | 0.43 | 0.99 | 1.00 | |
Ecology3 (Rockfish) | 0.21 | 0.98 | 1.00 | |
Scales3 (Shiny) | 0.41 | 0.98 | 1.00 | |
Length4 (Over 300 mm) | 0.18 | 0.98 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shima, H.; Sato, Y.; Sakata, K.; Asakura, T.; Kikuchi, J. Identifying a Correlation among Qualitative Non-Numeric Parameters in Natural Fish Microbe Dataset Using Machine Learning. Appl. Sci. 2022, 12, 5927. https://doi.org/10.3390/app12125927
Shima H, Sato Y, Sakata K, Asakura T, Kikuchi J. Identifying a Correlation among Qualitative Non-Numeric Parameters in Natural Fish Microbe Dataset Using Machine Learning. Applied Sciences. 2022; 12(12):5927. https://doi.org/10.3390/app12125927
Chicago/Turabian StyleShima, Hideaki, Yuho Sato, Kenji Sakata, Taiga Asakura, and Jun Kikuchi. 2022. "Identifying a Correlation among Qualitative Non-Numeric Parameters in Natural Fish Microbe Dataset Using Machine Learning" Applied Sciences 12, no. 12: 5927. https://doi.org/10.3390/app12125927
APA StyleShima, H., Sato, Y., Sakata, K., Asakura, T., & Kikuchi, J. (2022). Identifying a Correlation among Qualitative Non-Numeric Parameters in Natural Fish Microbe Dataset Using Machine Learning. Applied Sciences, 12(12), 5927. https://doi.org/10.3390/app12125927