Probabilistic Machine Learning for the Authentication of the Protected Designation of Origin of Greek Bottarga from Messolongi: A Generic Methodology to Cope with Very Small Number of Samples
Abstract
:1. Introduction
2. Modeling Approach
- X is the isotope being studied (e.g., 13C, 15N, 34S),
- Rsample is the isotopic ratio of the measured element in its physical form (e.g., 13C/12C, 15N/14N, 34S/32S) in the sample, and
- Rstandard is the isotopic ratio of the reference material used in the analysis.
2.1. Technical Challenges and Requirements
2.2. Model Details
2.3. Model Fitting Methodology
2.4. Model Comparison
2.5. Incorporating Measurement Error
2.6. Characterezation/Decision Methodology
3. Numerical Results
3.1. Dataset: Measured Bottarga Samples
3.2. Proposed Probabilistic Machine Learning for the Characterization of Protected Designation of Origin of Bottarga from Messolongi
3.3. Uncertainty of the Proposed Model
3.4. Decision Diagram
3.5. Decision Table
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Formula of Linear Part |
---|
, |
, |
, |
, |
Appendix B
d34SV−CDT (‰) | Confidence % (Based on the Mean of Multiple Measurements of a Sample) | Lower Limit of Confidence % (Due to Measurement Error) | Upper Limit of Confidence % (Due to Measurement Error) |
---|---|---|---|
4.00 | 100.00 | 100.00 | 100.00 |
4.20 | 100.00 | 100.00 | 100.00 |
4.40 | 100.00 | 100.00 | 100.00 |
4.60 | 99.54 | 99.05 | 100.00 |
4.80 | 98.00 | 97.52 | 98.50 |
5.00 | 96.40 | 95.84 | 96.94 |
5.20 | 94.75 | 94.15 | 95.30 |
5.40 | 92.83 | 92.33 | 93.48 |
5.60 | 91.01 | 90.39 | 91.61 |
5.80 | 89.13 | 88.60 | 89.72 |
6.00 | 87.25 | 86.63 | 87.90 |
6.20 | 85.13 | 84.52 | 85.89 |
6.40 | 83.06 | 82.45 | 83.80 |
6.60 | 80.89 | 80.22 | 81.65 |
6.80 | 78.61 | 77.93 | 79.44 |
7.00 | 76.39 | 75.67 | 77.16 |
7.20 | 73.99 | 73.28 | 74.86 |
7.40 | 71.65 | 70.86 | 72.38 |
7.60 | 69.13 | 68.38 | 69.91 |
7.80 | 66.76 | 66.00 | 67.50 |
8.00 | 64.37 | 63.55 | 65.22 |
8.20 | 61.68 | 60.78 | 62.58 |
8.40 | 58.92 | 58.10 | 59.77 |
8.60 | 56.21 | 55.29 | 57.05 |
8.80 | 53.24 | 52.41 | 54.24 |
9.00 | 50.54 | 49.68 | 51.46 |
9.20 | 47.54 | 46.58 | 48.55 |
9.40 | 44.44 | 43.43 | 45.49 |
9.60 | 41.31 | 40.33 | 42.31 |
9.80 | 38.16 | 37.14 | 39.19 |
10.00 | 34.89 | 33.88 | 35.97 |
10.20 | 31.65 | 30.59 | 32.74 |
10.40 | 28.32 | 27.33 | 29.35 |
10.60 | 24.95 | 23.93 | 26.08 |
10.80 | 21.69 | 20.62 | 22.75 |
11.00 | 18.15 | 16.96 | 19.33 |
11.20 | 14.49 | 13.49 | 15.64 |
11.40 | 10.87 | 9.87 | 12.10 |
11.60 | 7.10 | 5.95 | 8.36 |
11.80 | 3.32 | 2.18 | 4.50 |
12.00 | 0.00 | 0.00 | 0.85 |
12.20 | 0.00 | 0.00 | 0.00 |
12.40 | 0.00 | 0.00 | 0.00 |
12.60 | 0.00 | 0.00 | 0.00 |
12.80 | 0.00 | 0.00 | 0.00 |
13.00 | 0.00 | 0.00 | 0.00 |
13.20 | 0.00 | 0.00 | 0.00 |
13.40 | 0.00 | 0.00 | 0.00 |
13.60 | 0.00 | 0.00 | 0.00 |
13.80 | 0.00 | 0.00 | 0.00 |
14.00 | 0.00 | 0.00 | 0.00 |
14.20 | 0.00 | 0.00 | 0.00 |
14.40 | 0.00 | 0.00 | 0.00 |
14.60 | 0.00 | 0.00 | 0.00 |
14.80 | 0.00 | 0.00 | 0.00 |
15.00 | 0.00 | 0.00 | 0.00 |
15.20 | 0.00 | 0.00 | 0.00 |
15.40 | 0.00 | 0.00 | 0.00 |
15.60 | 0.00 | 0.00 | 0.00 |
15.80 | 0.00 | 0.00 | 0.00 |
16.00 | 0.00 | 0.00 | 0.00 |
16.20 | 0.00 | 0.00 | 0.00 |
16.40 | 0.00 | 0.00 | 0.00 |
16.60 | 0.00 | 0.00 | 0.00 |
16.80 | 0.00 | 0.00 | 0.00 |
17.00 | 0.00 | 0.00 | 0.00 |
References
- Chaguri, M.P.; Maulvault, A.L.; Nunes, M.L.; Santiago, D.A.; Denadai, J.C.; Fogaça, F.H.; Sant’Ana, L.S.; Ducatti, C.; Bandarra, N.; Carvalho, M.L.; et al. Different tools to trace geographic origin and seasonality of croaker (Micropogonias furnieri). LWT—Food Sci. Technol. 2015, 61, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Pascoal, A.; Barros-Velazquez, J.; Cepeda, A.; Gallardo, J.M.; Calo-Mata, P. Survey of the authenticity of prawn and shrimp species in commercial food products by PCR-RFLP analysis of a 16S rRNA/tRNAVal mitochondrial region. Food Chem. 2008, 109, 638–646. [Google Scholar] [CrossRef]
- Spink, J.; Moyer, D.C. Defining the public health threat of food fraud. J. Food Sci. 2011, 76, 157–163. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Fish matters: Importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 2013, 21, 22–38. [Google Scholar] [CrossRef]
- Mazzeo, M.F.; De Giulio, B.; Guerriero, G.; Ciarcia, G.; Malorni, A.; Russo, G.L.; Siciliano, R.A. Fish authentication by MALDI-TOF mass spectrometry. Agric. Food Chem. 2008, 56, 11071–11076. [Google Scholar] [CrossRef]
- Mansfield, B. Is fish health food or poison? Farmed fish and the material production of un/healthy nature. Antipode 2011, 43, 413–434. [Google Scholar] [CrossRef]
- Ortea, I.; Gallardo, J.M. Investigation of production method, geographical origin and species authentication in commercially relevant shrimps using stable isotope ratio and/or multi-element analyses combined with chemometrics: An exploratory analysis. Food Chem. 2015, 170, 145–153. [Google Scholar] [CrossRef]
- Camin, F.; Bontempo, L.; Perini, M.; Piasentier, E. Stable isotope ratio analysis for assessing the authenticity of food of animal origin. Compr. Rev. Food Sci. Food Saf. 2016, 15, 868–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N.; Crawford, J.; Gadd, P. Isotopic and elemental profiling to trace the geographic origins of farmed and wildcaught Asian seabass (Lates calcarifer). Aquaculture 2019, 502, 56–62. [Google Scholar] [CrossRef]
- Piras, C.; Scano, P.; Locci, E.; Sanna, R.; Marincola, F.C. Analysing the effects of frozen storage and processing on the metabolite profile of raw mullet roes using 1H NMR spectroscopy. Food Chem. 2014, 159, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Katerinopoulou, K.; Kontogeorgos, A.; Salmas, C.E.; Patakas, A.; Ladavos, A. Geographical origin authentication of agri-food products: A review. Foods 2020, 9, 489. [Google Scholar] [CrossRef]
- Kim, H.; Kumar, K.S.; Shin, K.H. Applicability of stable C and N isotope analysis in inferring the geographical origin and authentication of commercial fish (Mackerel, Yellow Croaker and Pollock). Food Chem. 2015, 172, 523–527. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Gonzalvez, A.; Armenta, S.; De La Guardia, M. Trace-element composition and stable-isotope ratio for discrimination of foods with Protected Designation of Origin. Trends Anal. Chem. 2005, 28, 1295–1311. [Google Scholar] [CrossRef]
- Guo, B.L.; Wei, Y.M.; Pan, J.R.; Li, Y. Stable C and N isotope ratio analysis for regional geographical traceability of cattle in China. Food Chem. 2010, 118, 915–920. [Google Scholar] [CrossRef]
- Yanagi, Y.; Hirooka, H.; Oishi, K.; Choumei, Y.; Hata, H.; Arai, M.; Kitagawa, M.; Gotoh, T.; Inada, S.; Kumagai, H. Stable carbon and nitrogen isotope analysis as a tool for inferring beef cattle feeding systems in Japan. Food Chem. 2012, 134, 502–506. [Google Scholar] [CrossRef]
- Aursand, M.; Mabon, F.; Martin, G.J. Characterization of farmed and wild salmon (Salmo salar) by a combined use of compositional and isotopic analyses. J. Am. Oil Chem. Soc. 2000, 77, 659–666. [Google Scholar] [CrossRef]
- Dempson, J.B.; Power, M. Use of stable isotopes to distinguish farmed from wild Atlantic salmon, Salmo salar. Ecol. Freshw. Fish 2004, 13, 176–184. [Google Scholar] [CrossRef]
- Bell, J.G.; Preston, T.; Henderson, R.J.; Strachan, F.; Bron, J.E.; Cooper, K.; Morrison, D.J. Discrimination of wild and cultured European sea bass (Dicentrarchus labrax) using chemical and isotopic analyses. J. Agric. Food Chem. 2007, 55, 5934–5941. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T.; Bron, J.E.; Hemderson, R.J.; Cooper, K.; Strachan, F.; Bell, J.G. Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting. Lipids 2007, 42, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Serrano, R.; Blanes, M.A.; Orero, L. Stable isotope determination in wild and farmed gilthead sea bream (Sparus aurata) tissues from the western Mediterranean. Chemosphere 2007, 69, 1075–1080. [Google Scholar] [CrossRef]
- Busetto, M.L.; Moretti, V.M.; Moreno-Rojas, J.M.; Caprino, F.; Giani, I.; Malandra, R.; Bellagamba, F.; Guillou, C. Authentication of farmed and wild turbot (Psetta maxima) by fatty acid and isotopic analyses combined with chemometrics. J. Agric. Food Chem. 2008, 56, 2742–2750. [Google Scholar] [CrossRef]
- Moreno-Rojas, J.M.; Tulli, F.; Messina, M.; Tibaldi, E.; Guillou, C. Stable isotope ratio analysis as a tool to discriminate between rainbow trout (O. mykiss) fed diets based on plant or fish-meal proteins. Rapid Commun. Mass Spec. 2008, 22, 3706–3710. [Google Scholar] [CrossRef]
- Thomas, F.; Jamin, E.; Wietzerbin, K.; Guérin, R.; Lees, M.; Morvan, E.; Billault, I.; Derrien, S.; Moreno-Rojas, J.M.; Serra, F.; et al. Determination of origin of Atlantic salmon (Salmo salar): The use of multiprobe and multielement isotopic analyses incombination with fatty acid composition to assess wild or farmed origin. J. Agric. Food Chem. 2008, 56, 989–997. [Google Scholar] [CrossRef]
- Fasolato, L.; Novelli, E.; Salmaso, L.; Corain, L.; Camin, F.; Perini, M.; Balzan, S. Application of nonparametric multivariate analyses to the authentication of wild and farmed European sea bass (Dicentrarchus labrax). Results of a survey on fish sampled in the retail trade. J. Agric. Food Chem. 2010, 58, 10979–10988. [Google Scholar] [CrossRef]
- Moretti, V.M.; Turchini, G.M.; Bellagamba, F.; Caprino, F. Traceability issues in fishery and aquaculture products. Vet. Res. Commun. 2003, 27, 497–505. [Google Scholar] [CrossRef]
- Turchini, G.M.; Quinn, G.P.; Jones, P.L.; Palmeri, G.; Gooley, G. Traceability and discrimination among differently farmed fish: A case study on Australian Murray cod. J. Agric. Food Chem. 2009, 57, 274–281. [Google Scholar] [CrossRef]
- Carter, J.; Tinggi, U.; Yang, X.; Fry, B. Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness. Food Chem. 2015, 170, 241–248. [Google Scholar] [CrossRef]
- Dinca, O.R.; Ionete, R.E.; Popescu, R.; Costinel, D.; Radu, G.L. Geographical and botanical origin discrimination of Romanian honey using complex stable isotope data and chemometrics. Food Anal. Methods 2015, 8, 401–412. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]
- Burkov, A. The Hundred-Page Machine Learning Book; Andriy Burkov: Quebec City, QC, Canada, 2019. [Google Scholar]
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; The MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Gelman, A. Bayesian Data Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 2nd ed.; Taylor and Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Martin, O. Bayesian Modeling and Computation in Python; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2, 55. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, B.; Gelman, A.; Hoffman, M.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A probabilistic programming language. J. Stat. Softw. 2017, 76, 1. [Google Scholar] [CrossRef] [Green Version]
- Homan, M.D.; Gelman, A. The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 2014, 15, 1593–1623. [Google Scholar]
- James, G.M.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Watanabe, S. Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 2010, 11, 3571–3594. [Google Scholar]
- Bruce, P.; Bruce, A.; Gedeck, P. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2020. [Google Scholar]
- Yokoyama, H.; Tamaki, A.; Harada, K.; Shimoda, K.; Koyama, K.; Ishihi, Y. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Mar. Ecol. Prog. Ser. 2005, 296, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Arcagni, M.; Campbell, L.M.; Arribιre, M.A.; Kyser, K.; Klassen, K.; Casaux, R.; Miserendino, M.L.; Guevara, S.R. Food web structure in a double-basin ultra-oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica 2013, 43, 131–142. [Google Scholar] [CrossRef]
- Suh, Y.J.; Shin, K.H. Size-related and seasonal diet of the manila clam (Ruditapes philippinarum), as determined using dual stable isotopes. Estuar. Coast. Shelf Sci. 2013, 135, 94–105. [Google Scholar]
- Sayle, K.L.; Cook, G.T.; Ascough, P.L.; Hastie, H.R.; Einarsson, T.; McGovern, T.H.; Hicks, M.T.; Edwald, A.; Friðriksson, A. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: Evidence of animal movement/husbandry practices in an early Viking community around Lake Mývatn, Iceland. Geochim. Cosmochim. Acta 2013, 120, 531–544. [Google Scholar] [CrossRef]
- Koutsodendris, A.; Brauer, A.; Zacharias, I.; Putyrskaya, V.; Klemt, E.; Sangiorgi, F.; Pross, J. Ecosystem response to human- and climate-induced environmental stress on an anoxic coastal lagoon (Etoliko, Greece) since 1930 AD. J. Paleolimnol. 2015, 53, 255–270. [Google Scholar] [CrossRef]
- Leonardos, I.; Sinis, A. Fish mass mortality in the Etolikon lagoon, Greece: The role of local geology. Cybium 1997, 21, 201–206. [Google Scholar]
- Winner, W.E.; Smith, C.L.; Koch, G.W.; Mooney, H.A.; Bewleyt, J.D.; Krouse, H.R. Rates of emission of H2S from plants and patterns of stable Sulphur isotope fractionation. Nature 1981, 289, 672–673. [Google Scholar] [CrossRef]
Feature | Is Influenced By |
---|---|
δ15NAIR (‰) | Nutrient uptake, digestion, metabolism, Cultivation Conditions (i.e., fertilizers)—Techniques |
δ13CV-PDB(‰) | Nutrient uptake (e.g., C3 versus C4), digestion and metabolism, adulteration of foods |
δ34SV-CDT(‰) | Bacterial action, Distance to Sea (e.g., inland versus coastal geography) |
Code | Area | Mean δ15NAIR (‰) | Mean δ13CV-PDB | Mean δ34SV-CDT (‰) |
---|---|---|---|---|
A1 | Mauritania | 9.6442 (0.0073) | −19.0075 (0.0084) | 16.0344 (0.0109) |
A2 | Preveza Greece | 10.8551 (0.0146) | −18.0034 (0.0187) | 15.1658 (0.0073) |
A3 | Messolongi Greece | 7.5246 (0.0056) | −18.4259 (0.0068) | 11.9966 (0.0135) |
A4 | Australia | 5.6429 (0.0050) | −14.5148 (0.0088) | 4.5341 (0.0094) |
δ15NAIR (‰) | δ13CV-PDB (‰) | δ34SV-CDT (‰) | |
---|---|---|---|
δ15NAIR (‰) | 1.00 | −0.85 | 0.95 |
δ13CV-PDB (‰) | −0.85 | 1.00 | −0.97 |
δ34SV-CDT (‰) | 0.95 | −0.97 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsirogiannis, G.; Thomatou, A.-A.; Psarra, E.; Mazarakioti, E.C.; Katerinopoulou, K.; Zotos, A.; Kontogeorgos, A.; Patakas, A.; Ladavos, A. Probabilistic Machine Learning for the Authentication of the Protected Designation of Origin of Greek Bottarga from Messolongi: A Generic Methodology to Cope with Very Small Number of Samples. Appl. Sci. 2022, 12, 6335. https://doi.org/10.3390/app12136335
Tsirogiannis G, Thomatou A-A, Psarra E, Mazarakioti EC, Katerinopoulou K, Zotos A, Kontogeorgos A, Patakas A, Ladavos A. Probabilistic Machine Learning for the Authentication of the Protected Designation of Origin of Greek Bottarga from Messolongi: A Generic Methodology to Cope with Very Small Number of Samples. Applied Sciences. 2022; 12(13):6335. https://doi.org/10.3390/app12136335
Chicago/Turabian StyleTsirogiannis, George, Anna-Akrivi Thomatou, Eleni Psarra, Eleni C. Mazarakioti, Katerina Katerinopoulou, Anastasios Zotos, Achilleas Kontogeorgos, Angelos Patakas, and Athanasios Ladavos. 2022. "Probabilistic Machine Learning for the Authentication of the Protected Designation of Origin of Greek Bottarga from Messolongi: A Generic Methodology to Cope with Very Small Number of Samples" Applied Sciences 12, no. 13: 6335. https://doi.org/10.3390/app12136335
APA StyleTsirogiannis, G., Thomatou, A. -A., Psarra, E., Mazarakioti, E. C., Katerinopoulou, K., Zotos, A., Kontogeorgos, A., Patakas, A., & Ladavos, A. (2022). Probabilistic Machine Learning for the Authentication of the Protected Designation of Origin of Greek Bottarga from Messolongi: A Generic Methodology to Cope with Very Small Number of Samples. Applied Sciences, 12(13), 6335. https://doi.org/10.3390/app12136335