Dynamics of Polar Resonances and Their Effects on Kozai–Lidov Mechanism
Abstract
:1. Introduction
2. Semi-Analytical Model
2.1. Action-Angle Variables for Polar MMRs
2.2. Secular Dynamics inside MMRs
3. Descriptions Concerning the Numerical Model
4. Dynamics of Interior Polar Resonance, the Case
4.1. Results of Numerical Experiments
4.2. Phase-Space Structure of Polar Resonance
4.3. Kozai–Lidov Dynamics inside Polar 2/1 Resonance
5. Dynamics of Exterior Polar Resonance, the Case
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henrard, J. A note concerning the 2:1 and the 3:2 resonances in the asteroid belt. Celest. Mech. Dyn. Astron. 1996, 64, 107–114. [Google Scholar] [CrossRef]
- Malhotra, R. The Phase Space Structure Near Neptune Resonances in the Kuiper Belt. Astron. J. 1996, 111, 504. [Google Scholar] [CrossRef]
- Sokolov, L.L.; Bashakov, A.A.; Pit’Ev, N.P. Resonance orbits of near-Earth asteroids. Sol. Syst. Res. 2009, 43, 319–323. [Google Scholar] [CrossRef]
- Smirnov, E.A.; Dovgalev, I.S.; Popova, E.A. Asteroids in three-body mean motion resonances with planets. Icarus 2018, 304, 24–30. [Google Scholar] [CrossRef]
- Malhotra, R.; Lan, L.; Volk, K.; Wang, X. Neptune’s 5:2 Resonance in the Kuiper Belt. Astron. J. 2018, 156, 55. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.W.; D Abramo, G. The population of near-Earth asteroids. Icarus 2015, 257, 302–312. [Google Scholar] [CrossRef]
- Qi, Y.; de Ruiter, A. Planar near-Earth asteroids in resonance with the Earth. Icarus 2019, 333, 52–60. [Google Scholar] [CrossRef]
- Li, M.; Huang, Y.; Gong, S. Assessing the risk of potentially hazardous asteroids through mean motion resonances analyses. APSS 2019, 364, 78. [Google Scholar] [CrossRef]
- Nesvorný, D.; Thomas, F.; Ferraz-Mello, S.; Morbidelli, A. A perturbative treatment of the co-orbital motion. Celest. Mech. Dyn. Astron. 2002, 82, 323–361. [Google Scholar] [CrossRef]
- Peale, S.J. Orbital resonance in the solar system. Annu. Rev. Astron. Astrophys. 1976, 14, 215–246. [Google Scholar] [CrossRef]
- Nesvorny, D.; Ferraz-Mello, S. On the Asteroidal Population of the First-Order Jovian Resonances. Nature 1997, 130, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.D.; Dermott, S.F. Solar System Dynamics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Morbidelli, A. Modern Celestial Mechanics: Aspects of Solar System Dynamics; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Gallardo, T. Atlas of the mean motion resonances in the Solar System. Icarus 2006, 184, 29–38. [Google Scholar] [CrossRef]
- Gallardo, T. Strength, stability and three dimensional structure of mean motion resonances in the solar system. Icarus 2019, 317, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Namouni, F.; Morais, M.H.M. Resonance capture at arbitrary inclination. Mon. Not. R. Astron. Soc. 2015, 446, 1998–2009. [Google Scholar] [CrossRef]
- Namouni, F.; Morais, M.H. Resonance capture at arbitrary inclination—II. Effect of the radial drift rate. Mon. Not. R. Astron. Soc. 2017, 467, 2673–2683. [Google Scholar] [CrossRef] [Green Version]
- Morais, M.H.M.; Namouni, F. Retrograde resonance in the planar three-body problem. Celest. Mech. Dyn. Astron. 2013, 117, 405–421. [Google Scholar] [CrossRef] [Green Version]
- Morais, M.H.M.; Namouni, F. A numerical investigation of coorbital stability and libration in three dimensions. Celest. Mech. Dyn. Astron. 2016, 125, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Wiegert, P.; Connors, M.; Veillet, C. A retrograde co-orbital asteroid of Jupiter. Nature 2017, 543, 687–689. [Google Scholar] [CrossRef]
- Huang, Y.; Li, M.; Li, J.; Gong, S. Dynamic portrait of the retrograde 1:1 mean motion resonance. Astron. J. 2018, 155, 262. [Google Scholar] [CrossRef]
- Namouni, F.; Morais, M.H. An interstellar origin for Jupiter’s retrograde co-orbital asteroid. Mon. Not. R. Astron. Soc. 2018, 477, L117–L121. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Huang, Y.; Gong, S. Centaurs potentially in retrograde co-orbit resonance with Saturn. Astron. Astrophys. 2018, 617, A114. [Google Scholar] [CrossRef]
- Morais, M.H.M.; Namouni, F. Periodic orbits of the retrograde coorbital problem. Mon. Not. R. Astron. Soc. 2019, 490, 3799–3805. [Google Scholar] [CrossRef]
- Li, M.; Huang, Y.; Gong, S. Survey of asteroids in retrograde mean motion resonances with planets. Astron. Astrophys. 2019, 630, A60. [Google Scholar] [CrossRef]
- Lei, H. Three-dimensional phase structures of mean motion resonances. Mon. Not. R. Astron. Soc. 2019, 487, 2097–2116. [Google Scholar] [CrossRef]
- Gallardo, T. Three-dimensional structure of mean motion resonances beyond Neptune. Celest. Mech. Dyn. Astron. 2020, 132, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Namouni, F.; Morais, M.H.M. Resonance libration and width at arbitrary inclination. Mon. Not. R. Astron. Soc. 2020, 493, 2854–2871. [Google Scholar] [CrossRef]
- Lidov, M. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 1962, 9, 719–759. [Google Scholar] [CrossRef]
- Kozai, Y. Secular Perturbations of Asteroids with High Inclination and Eccentricity. Astron. J. 1962, 67, 579. [Google Scholar] [CrossRef]
- Shevchenko, I.I. The Lidov-Kozai Effect—Applications in Exoplanet Research and Dynamical Astronomy; Springer: Berlin, Germany, 2017. [Google Scholar]
- Innanen, K.; Zheng, J.; Mikkola, S.; Valtonen, M. The Kozai Mechanism and the Stability of Planetary Orbits in Binary Star Systems. Astron. J. 1997, 113, 1915. [Google Scholar] [CrossRef]
- Jianghui, J.; Kinoshita, H.; Lin, L.; Guangyu, L.; Nakai, H. The Stability Analysis of the HD 82943 and HD 37124 Planetary Systems. arXiv 2002, arXiv:astro–ph/0208025. [Google Scholar]
- Wen, L. On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters. Astrophys. J. 2003, 598, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Funk, B.; Libert, A.S.; Süli, Á.; Pilat-Lohinger, E. On the influence of the Kozai mechanism in habitable zones of extrasolar planetary systems. Astron. Astrophys. 2011, 526, A98. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente Marcos, C.; de La Fuente Marcos, R. Extreme trans-Neptunian objects and the Kozai mechanism: Signalling the presence of trans-Plutonian planets. Mon. Not. R. Astron. Soc. 2014, 443, L59–L63. [Google Scholar] [CrossRef]
- Bailey, M.E.; Chambers, J.E.; Hahn, G. Origin of sungrazers - A frequent cometary end-state. Astron. Astrophys. 1992, 257, 315–322. [Google Scholar]
- Thomas, F.; Morbidelli, A. The Kozai resonance in the outer solar system and the dynamics of long-period comets. Celest. Mech. Dyn. Astron. 1996, 64, 209–229. [Google Scholar] [CrossRef]
- Lei, H. A semi-analytical model for secular dynamics of test particles in hierarchical triple systems. Mon. Not. R. Astron. Soc. 2019, 490, 4756–4769. [Google Scholar] [CrossRef]
- Naoz, S.; Farr, W.M.; Lithwick, Y.; Rasio, F.A. Hot Jupiters from secular planet-planet interactions. Nature 2011, 473, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Naoz, S.; Farr, W.M.; Lithwick, Y.; Rasio, F.A. Secular dynamics in hierarchical three-body systems. Mon. Not. R. Astron. Soc. 2013, 431, 2155–2171. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Naoz, S.; Holman, M.; Loeb, A. Chaos in the test particle eccentric Kozai-Lidov mechanism. Astrophys. J. 2014, 791. [Google Scholar] [CrossRef] [Green Version]
- Naoz, S.; Li, G.; Zanardi, M.; de Elía, G.C.; Di Sisto, R.P. The Eccentric Kozai-Lidov Mechanism for Outer Test Particle. Astron. J. 2017, 154, 18. [Google Scholar] [CrossRef] [Green Version]
- Will, C. Orbital flips in hierarchical triple systems: Relativistic effects and third-body effects to hexadecapole order. Phys. Rev. D 2017, 96, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Saillenfest, M.; Fouchard, M.; Tommei, G.; Valsecchi, G.B. Non-resonant secular dynamics of trans-Neptunian objects perturbed by a distant super-Earth. Celest. Mech. Dyn. Astron. 2017, 129, 329–358. [Google Scholar] [CrossRef] [Green Version]
- Kozai, Y. Secular perturbations of resonant asteroids. Celest. Mech. Dyn. Astron. 1985, 36, 47–69. [Google Scholar] [CrossRef]
- Giacaglia, G.E.O. Secular Motion of Resonant Asteroids. SAO Spec. Rep. 1968, 278, 47–69. [Google Scholar]
- Giacaglia, G.E.O. Resonance in the Restricted Problem of Three Bodies. Astron. J. 1969, 74, 1254. [Google Scholar] [CrossRef]
- Gomes, R.S.; Gallardo, T.; Fernandez, J.; Brunini, A. On the origin of the high-perihelion scattered disk: The role of the kozai mechanism and mean motion resonances. Celest. Mech. Dyn. Astron. 2005, 91, 109–129. [Google Scholar] [CrossRef]
- Gomes, R.S. The origin of TNO 2004 XR190 as a primordial scattered object. Icarus 2011, 215, 661–668. [Google Scholar] [CrossRef]
- Gallardo, T.; Hugo, G.; Pais, P. Survey of Kozai dynamics beyond Neptune. Icarus 2012, 220, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Morbidelli, A.; Moons, M. Secular Resonances in Mean Motion Commensurabilities: The 2/1 and 3/2 Cases. Icarus 1993, 102, 316–332. [Google Scholar] [CrossRef]
- Moons, M.; Morbidelli, A. Secular Resonances in Mean Motion Commensurabilities: The 4/1, 3/1, 5/2, and 7/3 Cases. Icarus 1995, 114, 33–50. [Google Scholar] [CrossRef]
- Morbidelli, A.; Thomas, F.; Moons, M. The Resonant Structure of the Kuiper Belt and the Dynamics of the First Five Trans-Neptunian Objects. Icarus 1995, 118, 322–340. [Google Scholar] [CrossRef]
- Wan, X.S.; Huang, T.Y. An exploration of the Kozai resonance in the Kuiper Belt. Mon. Not. R. Astron. Soc. 2007, 377, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Sidorenko, V.V.; Neishtadt, A.I.; Artemyev, A.V.; Zelenyi, L.M. Quasi-satellite orbits in the general context of dynamics in the 1:1 mean motion resonance: Perturbative treatment. Celest. Mech. Dyn. Astron. 2014, 120, 131–162. [Google Scholar] [CrossRef] [Green Version]
- Giuppone, C.A.; Leiva, A.M. Secular models and Kozai resonance for planets in coorbital non-coplanar motion. Mon. Not. R. Astron. Soc. 2016, 460, 966–979. [Google Scholar] [CrossRef] [Green Version]
- Saillenfest, M.; Fouchard, M.; Tommei, G.; Valsecchi, G.B. Long-term dynamics beyond Neptune: Secular models to study the regular motions. Celest. Mech. Dyn. Astron. 2016, 126, 369–403. [Google Scholar] [CrossRef] [Green Version]
- Saillenfest, M.; Fouchard, M.; Tommei, G.; Valsecchi, G.B. Study and application of the resonant secular dynamics beyond Neptune. Celest. Mech. Dyn. Astron. 2017, 127, 477–504. [Google Scholar] [CrossRef] [Green Version]
- Saillenfest, M.; Lari, G. The long-term evolution of known resonant trans-Neptunian objects. Astron. Astrophys. 2017, 79, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Batygin, K.; Morbidelli, A. Dynamical Evolution Induced by Planet Nine. Astron. J. 2017, 154, 229. [Google Scholar] [CrossRef]
- Sidorenko, V.V. Dynamics of “jumping” Trojans: A perturbative treatment. Celest. Mech. Dyn. Astron. 2018, 130, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E. Thersites: A ’jumping’ Trojan? Astron. Astrophys. 2000, 354, 1091–1100. [Google Scholar]
- Huang, Y.; Li, M.; Li, J.; Gong, S. Kozai-Lidov mechanism inside retrograde mean motion resonances. Mon. Not. R. Astron. Soc. 2018, 481, 5401–5410. [Google Scholar] [CrossRef]
- Qi, Y.; de Ruiter, A. Kozai mechanism inside mean motion resonances in the three-dimensional phase space. Mon. Not. R. Astron. Soc. 2020, 493, 5816–5824. [Google Scholar] [CrossRef]
- Efimov, S.S.; Sidorenko, V.V. An analytically treatable model of long-term dynamics in a mean motion resonance with coexisting resonant modes. Celest. Mech. Dyn. Astron. 2020, 132, 1–38. [Google Scholar] [CrossRef]
- Batygin, K.; Brown, M.E. Generation of Highly Inclined Trans-Neptunian Objects by Planet Nine. Astrophys. J. 2016, 833, L3. [Google Scholar] [CrossRef] [Green Version]
- Namouni, F.; Morais, M.H. The disturbing function for asteroids with arbitrary inclinations. Mon. Not. R. Astron. Soc. 2016, 474, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Morais, M.H.M.; Namouni, F. First trans-Neptunian object in polar resonance with Neptune. Mon. Not. R. Astron. Soc. 2017, 472, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Namouni, F.; Morais, M.H. The disturbing function for polar Centaurs and transneptunian objects. Mon. Not. R. Astron. Soc. 2017, 471, 2097–2110. [Google Scholar] [CrossRef] [Green Version]
- Jorba, À.; Masdemont, J. Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D Nonlinear Phenom. 1999, 132, 189–213. [Google Scholar] [CrossRef]
- Masdemont, J. High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. Int. J. 2005, 20, 59–113. [Google Scholar] [CrossRef]
- Hou, X.Y.; Liu, L. On motions around the collinear libration points in the elliptic restricted three-body problem. Mon. Not. R. Astron. Soc. 2011, 415, 3552–3560. [Google Scholar] [CrossRef] [Green Version]
- Nesvorný, D.; Morbidelli, A. An analytic model of three-body mean motion resonances. Celest. Mech. Dyn. Astron. 1998, 71, 243–271. [Google Scholar] [CrossRef]
- Ellis, K. The Disturbing Function in Solar System Dynamics. Icarus 2000, 147, 129–144. [Google Scholar] [CrossRef]
- Mardling, R.A. New developments for modern celestial mechanics. I. General coplanar three-body systems. Application to exoplanets. Mon. Not. R. Astron. Soc. 2013, 435, 2187–2226. [Google Scholar] [CrossRef] [Green Version]
- Moons, M.; Morbidelli, A. The main mean motion commensurabilities in the planar circular and elliptic problem. Celest. Mech. Dyn. Astron. 1993, 57, 99–108. [Google Scholar] [CrossRef]
- Wang, X.; Malhotra, R. Mean Motion Resonances at High Eccentricities: The 2:1 and the 3:2 Interior Resonances. Astron. J. 2017, 154, 20. [Google Scholar] [CrossRef] [Green Version]
- Michtchenko, T.A.; Beaugé, C.; Ferraz-Mello, S. Dynamic portrait of the planetary 2/1 mean-motion resonance—II. Systems with a more massive inner planet. Mon. Not. R. Astron. Soc. 2008, 391, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Michtchenko, T.A.; Beaugé, C.; Ferraz-Mello, S. Dynamic portrait of the planetary 2/1 mean-motion resonance—I. Systems with a more massive outer planet. Mon. Not. R. Astron. Soc. 2008, 387, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Huang, Y.; Gong, S. Dynamics of retrograde 1/n mean motion resonances: The 1/-2, 1/-3 cases. Astrophys. Space Sci. 2020, 365, 1–13. [Google Scholar] [CrossRef]
- Gallardo, T. The occurrence of high-order resonances and Kozai mechanism in the scattered disk. Icarus 2006, 181, 205–217. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.Y.; Sun, Y.S. A study of the high-inclination population in the Kuiper belt—I. The Plutinos. Mon. Not. R. Astron. Soc. 2013, 437, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Beaugé, C.; Roig, F. A Semianalytical Model for the Motion of the Trojan Asteroids: Proper Elements and Families. Icarus 2001, 153, 391–415. [Google Scholar] [CrossRef]
- Gallardo, T. Atlas of three body mean motion resonances in the Solar System. Icarus 2014, 231, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Brasil, P.I.; Gomes, R.S.; Soares, J.S. Dynamical formation of detached trans-Neptunian objects close to the 2:5 and 1:3 mean motion resonances with Neptune. Astron. Astrophys. 2014, 564, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 1999, 304, 793–799. [Google Scholar] [CrossRef]
- Message, P.J. Proceedings of the Celestial Mechanics Conference: The search for asymmetric periodic orbits in the restricted problem of three bodies. Astron. J. 1958, 63, 443. [Google Scholar] [CrossRef]
- Schubart, J. Long-Period Effects in Nearly Commensurable Cases of the Restricted Three-Body Problem. Sao Spec. Rep. 1964, 149, 1–36. [Google Scholar]
- Beaugé, C. Asymmetric librations in exterior resonances. Celest. Mech. Dyn. Astron. 1994, 60, 225–248. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Gong, S. Dynamics of Polar Resonances and Their Effects on Kozai–Lidov Mechanism. Appl. Sci. 2022, 12, 6530. https://doi.org/10.3390/app12136530
Li M, Gong S. Dynamics of Polar Resonances and Their Effects on Kozai–Lidov Mechanism. Applied Sciences. 2022; 12(13):6530. https://doi.org/10.3390/app12136530
Chicago/Turabian StyleLi, Miao, and Shengping Gong. 2022. "Dynamics of Polar Resonances and Their Effects on Kozai–Lidov Mechanism" Applied Sciences 12, no. 13: 6530. https://doi.org/10.3390/app12136530
APA StyleLi, M., & Gong, S. (2022). Dynamics of Polar Resonances and Their Effects on Kozai–Lidov Mechanism. Applied Sciences, 12(13), 6530. https://doi.org/10.3390/app12136530