Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Soil Colloids Preparation
2.3. Porous Media and Column Packing
2.4. Solutions Preparation
2.5. Experimental Method
2.5.1. Isothermal Adsorption
2.5.2. Column Experiment
2.6. Mathematical Models
3. Results and Discussion
3.1. Characterization of Soil Samples and Soil Colloids
3.2. Ni2+ Adsorption on Sand and Soil Colloids
3.2.1. pH Effect
3.2.2. Ionic Strength Effect
3.2.3. Isothermal Adsorption of Ni2+
3.3. Ni2+ Transport in the Saturated Porous Media
3.3.1. Effect of Soil Colloids
3.3.2. Effect of Ion Strength
3.3.3. Effect of Humic Acid
4. Conclusions
- (1)
- Soil colloids have greater potential for Ni2+ adsorption than quartz sand, suggesting the important role of soil colloids in the subsurface environment. From this, we infer that most contaminants, such as heavy metals, could be immobilized by colloids in soil instead of transported from surface soil to groundwater.
- (2)
- Relatively higher pHs and smaller ISs were favorable for Ni2+ adsorption by soil colloids, indicating the hydrochemical conditions of groundwater greatly affected the fate of heavy metals in the subsurface environment. Human activities, such as artificial pumping, water injection experiment, or rapid infiltration of rainfall, may lead to the release of colloids and change the environmental conditions, which should be considered to protect the groundwater safety and to take steps, carrying out contaminant remediation strategies.
- (3)
- A higher IS could slightly improve the initial transport rate of Ni2+, but could not improve the final transport efficiency of Ni2+ in the absence (or presence) of soil colloids. HA has a negative effect on Ni2+ transport in the presence of soil colloids, while there is no obvious difference when Ni2+ transports with and without HA in the absence of soil colloids. This result indicates that HA is negligible when heavy metals transport without soil colloids.
- (4)
- All final transport efficiencies of Ni2+ were less than 100% when Ni2+ was transported in the sand column, which means that Ni2+ was retained in the sand column more or less. This result reveals that the soil or aquifer could act as a filter to remove heavy metals in the subsurface environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Li, H.; Su, G.; Chen, J. Heavy metal distribution profiles in soil and groundwater near pig farms in China. Chemosphere 2022, 294, 133721. [Google Scholar] [CrossRef] [PubMed]
- Jabbo, N.J.; Isa, N.M.; Aris, A.Z.; Ramli, M.F.; Abubakar, M.B. Geochemometric approach to groundwater quality and health risk assessment of heavy metals of Yankari Game Reserve and its environs, Northeast Nigeria. J. Clean. Prod. 2022, 330, 129916. [Google Scholar] [CrossRef]
- Tan, M.; Liu, L.; Zhang, M.; Liu, Y.; Li, C. Effects of solution chemistry and humic acid on the transport of polystyrene microplastics in manganese oxides coated sand. J. Hazard. Mater. 2021, 413, 125410. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, A.R.; Batelaan, O.; Hutson, J.L.; Fallowfield, H.J. Effect of bacteria and virus on transport and retention of graphene oxide nanoparticles in natural limestone sediments. Chemosphere 2020, 248, 125929. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, P.; Tian, Y.; Shen, C.; Li, Z.; Peng, P.; Jin, C. Investigation for Synergies of Ionic Strength and Flow Velocity on Colloidal-Sized Microplastic Transport and Deposition in Porous Media Using the Colloidal–AFM Probe. Langmuir 2020, 36, 6292–6303. [Google Scholar] [CrossRef]
- Degueldre, C.; Triay, I.; Kim, J.-I.; Vilks, P.; Laaksoharju, M.; Miekeley, N. Groundwater colloid properties: A global approach. Appl. Geochem. 2000, 15, 1043–1051. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Chen, F.; Yang, Y. Interplay of natural organic matter with flow rate and particle size on colloid transport: Experimentation, visualization, and modeling. Environ. Sci. Technol. 2015, 49, 13385–13393. [Google Scholar] [CrossRef]
- Moradi, R.; Rokni, F.F. Synthesis, characterization and performance of nio/cnt nanocomposite for arsenic removal from aqueous media. Curr. Nanosci. 2017, 13, 579–585. [Google Scholar] [CrossRef]
- Rao, G.P.; Lu, C.; Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 2007, 58, 224–231. [Google Scholar] [CrossRef]
- Hammes, J.; Gallego-Urrea, J.A.; Hassellöv, M. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport. Water Res. 2013, 47, 5350–5361. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lu, T.; Zhang, H.; Shang, Z.; Chen, J.; Wang, Y.; Li, D.; Zhou, Y.; Qi, Z. Effects of solution chemistry on the attachment of graphene oxide onto clay minerals. Environ. Sci. Process. Impacts 2019, 21, 506–513. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, T.; Zhang, R.; Wang, M.; Krishnan, S.; Liu, S.; Zhou, Y.; Li, D.; Qi, Z. Effects of clay colloids on ciprofloxacin transport in saturated quartz sand porous media under different solution chemistry conditions. Ecotoxicol. Environ. Saf. 2020, 199, 110754. [Google Scholar] [CrossRef]
- Ryan, N.J.; Elimelech, M. Colloid mobilization and transport in groundwater. Colloids Surf. Physicochem. Eng. Asp. 1996, 107, 1–56. [Google Scholar] [CrossRef]
- De Jonge, W.L.; Kjærgaard, C.; Moldrup, P. Colloids and colloid-facilitated transport of contaminants in soils: An introduction. Vadose Zone J. 2004, 3, 321–325. [Google Scholar] [CrossRef]
- Sen, K.T.; Khilar, K.C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 2006, 119, 71–96. [Google Scholar]
- Shen, C.; Jin, Y.; Zhuang, J.; Li, T.; Xing, B. Role and importance of surface heterogeneities in transport of particles in saturated porous media. Crit. Rev. Environ. Sci. Technol. 2020, 50, 244–329. [Google Scholar] [CrossRef]
- Abollino, O.; Aceto, M.; Malandrino, M.; Sarzanini, C.; Mentasti, E. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res. 2003, 37, 1619–1627. [Google Scholar] [CrossRef]
- Liu, T.; Yang, Y.; Wang, Z.-L.; Sun, Y. Remediation of arsenic (III) from aqueous solutions using improved nanoscale zero-valent iron on pumice. Chem. Eng. J. 2016, 288, 739–744. [Google Scholar] [CrossRef]
- Grolimund, D.; Borkovec, M.; Barmettler, K.; Sticher, H. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study. Environ. Sci. Technol. 1996, 30, 3118–3123. [Google Scholar] [CrossRef]
- He, J.; Wang, D.; Fan, T.; Zhou, D. Cotransport of Cu with Graphene Oxide in Saturated Porous Media with Varying Degrees of Geochemical Heterogeneity. Water 2020, 12, 444. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Lei, Z.; Hu, E.; Wang, H.; Wang, Q.; Zhang, R.; Li, H. Cotransport of uranyl carbonate loaded on amorphous colloidal silica and strip-shaped humic acid in saturated porous media: Behavior and mechanism. Environ. Pollut. 2021, 285, 117230. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Cui, L.; Zhao, W.; Tian, Y.; Li, M.; Wang, Y.; Chen, Z. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media: The impact of ionic strength and cationic types. Sci. Total Environ. 2021, 753, 142064. [Google Scholar] [CrossRef] [PubMed]
- Corapcioglu, Y.M.; Choi, H. Modeling colloid transport in unsaturated porous media and validation with laboratory column data. Water Resour. Res. 1996, 32, 3437–3449. [Google Scholar] [CrossRef]
- Saito, T.; Suzuki, Y.; Mizuno, T. Size and elemental analyses of nano colloids in deep granitic groundwater: Implications for transport of trace elements. Colloids Surf. Physicochem. Eng. Aspects 2013, 435, 48–55. [Google Scholar] [CrossRef]
- Fang, J.; Shan, X.-Q.; Wen, B.; Lin, J.-M.; Owens, G.; Zhou, S.-R. Transport of copper as affected by titania nanoparticles in soil columns. Environ. Pollut. 2011, 159, 1248–1256. [Google Scholar] [CrossRef]
- Baumann, T.; Fruhstorfer, P.; Klein, T.; Niessner, R. Colloid and heavy metal transport at landfill sites in direct contact with groundwater. Water Res. 2006, 40, 2776–2786. [Google Scholar] [CrossRef]
- Kjøller, C.; Postma, D.; Larsen, F. Groundwater acidification and the mobilization of trace metals in a sandy aquifer. Environ. Sci. Technol. 2004, 38, 2829–2835. [Google Scholar] [CrossRef]
- Won, J.; Wirth, X.; Burns, S.E. An experimental study of cotransport of heavy metals with kaolinite colloids. J. Hazard. Mater. 2019, 373, 476–482. [Google Scholar] [CrossRef]
- Tan, B.; Liu, C.; Tan, X.; You, X.; Dai, C.; Liu, S.; Li, J.; Li, N. Heavy metal transport driven by seawater-freshwater interface dynamics: The role of colloid mobilization and aquifer pore structure change. Water Res. 2022, 217, 118370. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, W.; Wang, J.; Xian, D.; Tan, Z.; Du, L.; Li, X.; Pan, D.; Chen, Z.; Wu, W. Effect of pH on the formation of U (VI) colloidal particles in a natural groundwater. J. Radioanal. Nucl. Chem. 2021, 328, 785–794. [Google Scholar] [CrossRef]
- Syngouna, I.V.; Chrysikopoulos, C.V. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads. J. Colloid Interface Sci. 2015, 440, 140–150. [Google Scholar] [CrossRef]
- Shi, K.; Wang, X.; Chu, X.; Li, T.; Yin, Y.; Shen, C. Impact of heavy metal cations on deposition and release of clay colloids in saturated porous media. Vadose Zone J. 2022, e20179. [Google Scholar] [CrossRef]
- Yang, Y.; Yidan, Z.; Wenqing, Z.; Yuhui, W.; Dazhi, Z. Co-migration of nickel and natural colloids in groundwater system. J. Jilin Univ. Earth Sci. Ed. 2020, 50, 226–233. [Google Scholar]
- Guo, H.; Wen, D.; Liu, Z.; Jia, Y.; Guo, Q. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Appl. Geochem. 2014, 41, 196–217. [Google Scholar] [CrossRef]
- Chotpantarat, S.; Kiatvarangkul, N. Facilitated transport of cadmium with montmorillonite KSF colloids under different pH conditions in water-saturated sand columns: Experiment and transport modeling. Water Res. 2018, 146, 216–231. [Google Scholar] [CrossRef]
- McBride, M.B. Cadmium uptake by crops estimated from soil total Cd and pH. Soil Sci. 2002, 167, 62–67. [Google Scholar] [CrossRef]
- Nelson, S.; Yonge, D.; Barber, M. Effects of road salts on heavy metal mobility in two eastern Washington soils. J. Environ. Eng. 2009, 135, 505–510. [Google Scholar] [CrossRef]
- Roy, B.S.; Dzombak, D.A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environ. Sci. Technol. 1997, 31, 656–664. [Google Scholar] [CrossRef]
- Luo, X.; Yu, L.; Wang, C.; Yin, X.; Mosa, A.; Lv, J.; Sun, H. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere 2017, 169, 609–617. [Google Scholar] [CrossRef]
- McBride, M.B. A critique of diffuse double layer models applied to colloid and surface chemistry. Clays Clay Miner. 1997, 45, 598–608. [Google Scholar] [CrossRef]
- Garcia-Garcia, S.; Wold, S.; Jonsson, M. Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength. Appl. Clay Sci. 2009, 43, 21–26. [Google Scholar] [CrossRef]
- Compère, F.; Porel, G.; Delay, F. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. J. Contam. Hydrol. 2001, 49, 1–21. [Google Scholar] [CrossRef]
- Bhattacharyya, G.K.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, D.; Vanderschueren, R.; Fritzsche, A.; Meckenstock, R.U.; Smolders, E. Efficient removal of arsenate from oxic contaminated water by colloidal humic acid-coated goethite: Batch and column experiments. J. Clean. Prod. 2018, 189, 510–518. [Google Scholar] [CrossRef]
- Bradford, A.S.; Torkzaban, S.; Walker, S.L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 2007, 41, 3012–3024. [Google Scholar] [CrossRef]
- Peng, S.; Wu, D.; Ge, Z.; Tong, M.; Kim, H. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media. Environ. Pollut. 2017, 225, 141–149. [Google Scholar] [CrossRef]
- Zhou, D.; Jiang, X.; Lu, Y.; Fan, W.; Huo, M.; Crittenden, J. Cotransport of graphene oxide and Cu (II) through saturated porous media. Sci. Total Environ. 2016, 550, 717–726. [Google Scholar] [CrossRef]
- Baumann, T.; Müller, S.; Niessner, R. Migration of dissolved heavy metal compounds and PCP in the presence of colloids through a heterogeneous calcareous gravel and a homogeneous quartz sand–pilot scale experiments. Water Res. 2002, 36, 1213–1223. [Google Scholar] [CrossRef]
- Espinasse, B.; Hotze, E.M.; Wiesner, M.R. Transport and retention of colloidal aggregates of C60 in porous media: Effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol. 2007, 41, 7396–7402. [Google Scholar] [CrossRef]
- Saleh, N.; Kim, H.-J.; Phenrat, T.; Matyjaszewski, K.; Tilton, R.D.; Lowry, G.V. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 2008, 42, 3349–3355. [Google Scholar] [CrossRef]
- Zhang, M.; Bradford, S.A.; Šimůnek, J.; Vereecken, H.; Klumpp, E. Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil. Water Res. 2017, 109, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Weng, L.; Temminghoff, E.J.; Lofts, S.; Tipping, E.; van Riemsdijk, W.H. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 2002, 36, 4804–4810. [Google Scholar] [CrossRef]
- Chen, H.; Koopal, L.K.; Xiong, J.; Avena, M.; Tan, W. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. J. Colloid Interface Sci. 2017, 504, 457–467. [Google Scholar] [CrossRef]
- Ma, J.; Guo, H.; Lei, M.; Li, Y.; Weng, L.; Chen, Y.; Ma, Y.; Deng, Y.; Feng, X.; Xiu, W. Enhanced transport of ferrihydrite colloid by chain-shaped humic acid colloid in saturated porous media. Sci. Total Environ. 2018, 621, 1581–1590. [Google Scholar] [CrossRef]
- Wang, T.; Yen, Y.-J.; Hsieh, Y.-K.; Wang, J. Size effect of calcium-humic acid non-rigid complexes on the fouling behaviors in nanofiltration: An LA-ICP-MS study. Colloids Surf. Physicochem. Eng. Aspects. 2017, 513, 335–347. [Google Scholar] [CrossRef]
- Aiken, R.G.; Hsu-Kim, H.; Ryan, J.N. Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids. Environ. Sci. Technol. 2011, 8, 3196–3201. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, T.; Wu, Y. Influence of mineral colloids and humic substances on uranium (VI) transport in water-saturated geologic porous media. J. Contam. Hydrol. 2014, 170, 76–85. [Google Scholar] [CrossRef]
Materials | pH | CEC a | Mechanical Composition (mm%) | Average Particle Size (nm) | Zeta Potential (mV) | Mass Concentration of Soil Colloid (g·L−1) | TOC b | |
---|---|---|---|---|---|---|---|---|
Soil colloids | 5.81 | — | — | — | 433.3 | −26.23 | 0.22 | 5.72 mg/L |
Soil samples | 7.32 | 34 | 2–0.02 | 32.94 | 1270 | −25.7 | — | 27.17% |
0.02–0.002 | 55.72 | |||||||
<0.002 | 11.34 |
Materials | Langmuir Equation | Freundlich Equation | ||||
---|---|---|---|---|---|---|
Qm | b | R2 | Kf | n | R2 | |
Sand | 0.1973 | 1.3259 | 0.9976 | 0.1503 | 1.2077 | 0.9993 |
Soil colloid | 57.1429 | 0.0938 | 0.9911 | 6.8391 | 0.7874 | 0.9604 |
Column Experiment | Colloids | IS (mmol·L−1) | HA (mg·L−1) | Concentration of Ni2+ Injection (mg·L−1) | Average Concentration of Ni2+ at Plateau (mg·L−1) | Penetration Rate of Ni2+ (%) |
---|---|---|---|---|---|---|
1 | × | 0 | 0 | 0.6628 | 0.54 | 81.39 |
2 | × | 3 | 0 | 0.6628 | 0.49 | 73.96 |
3 | √ | 0 | 0 | 0.6628 | 0.47 | 71.30 |
4 | √ | 3 | 0 | 0.6628 | 0.48 | 72.92 |
5 | × | 0 | 20 | 0.6628 | 0.54 | 80.88 |
6 | √ | 0 | 20 | 0.6628 | 0.38 | 58.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Zhu, Y.; Wang, Y.; Song, Z.; Wu, Y.; Ma, W.; Hou, Y.; Zhang, W.; Yang, Y. Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid. Appl. Sci. 2022, 12, 6591. https://doi.org/10.3390/app12136591
Wei Z, Zhu Y, Wang Y, Song Z, Wu Y, Ma W, Hou Y, Zhang W, Yang Y. Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid. Applied Sciences. 2022; 12(13):6591. https://doi.org/10.3390/app12136591
Chicago/Turabian StyleWei, Zhanxi, Yidan Zhu, Yuanyuan Wang, Zefeng Song, Yuanzhao Wu, Wenli Ma, Yongxia Hou, Wenqing Zhang, and Yuesuo Yang. 2022. "Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid" Applied Sciences 12, no. 13: 6591. https://doi.org/10.3390/app12136591
APA StyleWei, Z., Zhu, Y., Wang, Y., Song, Z., Wu, Y., Ma, W., Hou, Y., Zhang, W., & Yang, Y. (2022). Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid. Applied Sciences, 12(13), 6591. https://doi.org/10.3390/app12136591