Gait Biomechanics for Fall Prevention among Older Adults
Abstract
:1. Introduction
2. Fall Prevention for Sustainable Healthcare Systems
3. Biomechanical Factors for Falls Risks
3.1. Biomechanics of Tripping and Minimum Foot Clearance (MFC)
3.2. Biomechanics of Slipping and Coefficient of Friction (COF)
4. Biomechanics of Dynamic Balance
4.1. Margin of Stability (MOS)
4.2. Available Response Time (ART)
5. Fall Prevention Strategies
5.1. Footwear Intervention
5.2. Exercise Intervention
5.3. Technology-Based Intervention
6. Conclusions
Funding
Conflicts of Interest
References
- Klenk, J.; Keil, U.; Jaensch, A.; Christiansen, M.C.; Nagel, G. Changes in life expectancy 1950–2010: Contributions from age- and disease-specific mortality in selected countries. Popul. Health Metr. 2016, 14, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, N.; Shiroiwa, T.; Fukuda, T.; Murashima, S.; Hayashida, K. Healthcare costs for the elderly in Japan: Analysis of medical care and long-term care claim records. PLoS ONE 2018, 13, e0190392. [Google Scholar] [CrossRef]
- Matsuda, S. Health policy in Japan—Current situation and future challenges. JMA J. 2019, 2, 1–10. [Google Scholar] [PubMed] [Green Version]
- Sakamoto, H.; Rahman, M.; Nomura, S.; Okamoto, E.; Koike, S.; Yasunaga, H.; Kawakami, N.; Hashimoto, H.; Kondo, N.; Abe, S.K.; et al. Japan Health System Review; World Health Organization, Regional Office for South-East Asia: New Delhi, India, 2018; p. 8. [Google Scholar]
- Scott, A.J. The longevity society. Lancet Healthy Longev. 2021, 2, E820–E827. [Google Scholar] [CrossRef]
- Woods, A.J.; Cohen, R.A.; Pahor, M. Cognitive frailty: Frontiers and challenges. J. Nutr. Health Aging 2013, 17, 741–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tan, S.S.; Franse, C.B.; Alhambra-Borrás, T.; Durá-Ferrandis, E.; Bilajac, L.; Markaki, A.; Verma, A.; Mattace-Raso, F.; Voorham, A.J.J.; et al. Association between physical, psychological and social frailty and health-related quality of life among older people. Eur. J. Public Health 2019, 29, 936–942. [Google Scholar] [CrossRef]
- Espinoza, S.E.; Fried, L.P. Risk factors for frailty in the older adult. Consultant 360 2007, 15, 37. [Google Scholar]
- Li, W.; Keegan, T.H.; Sternfeld, B.; Sidney, S.; Quesenberry, C.P., Jr.; Kelsey, J.L. Outdoor falls among middle-aged and older adults: A neglected public health problem. Am. J. Public Health 2006, 96, 1192–1200. [Google Scholar] [CrossRef]
- Allali, G.; Launay, C.P.; Blumen, H.M.; Gallisaya, M.L.; De Cock, A.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.; Verghese, J.; Beauchet, O. Falls, cognitive impairment, and gait performance: Results from the GOOD initiative. J. Am. Med. Dir. Assoc. 2017, 18, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, C.M.; Faulkner, R.A. The history of falls and the association of the timed up and go test to falls and near-falls in older adults with hip osteoarthritis. BMC Geriatr. 2007, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Bunn, F.; Dickinson, A.; Simpson, C.; Narayanan, V.; Humphrey, D.; Griffiths, C.; Martin, W.; Victor, C. Preventing falls among older people with mental health problems: A systematic review. BMC Nurs. 2014, 13, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crews, J.E.; Campbell, V.A. Vision impairment and hearing loss among community-dwelling older Americans: Implications for health and functioning. Am. J. Public Health 2004, 94, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and bone loss: New insights for the clinician. Ther. Adv. Musculoskelet. Dis. 2012, 4, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Smee, D.J.; Anson, J.M.; Waddington, G.S.; Berry, H.L. Association between physical functionality and falls risk in community-living older adults. Curr. Gerontol. Geriatr. Res. 2012, 2012, 864516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doré, A.L.; Golightly, Y.M.; Mercer, V.S.; Shi, X.A.; Renner, J.B.; Jordan, J.M.; Nelson, A.E. Lower-extremity osteoarthritis and the risk of falls in a community-based longitudinal study of adults with and without osteoarthritis. Arthritis Care Res. 2015, 67, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Ferlinc, A.; Fabiani, E.; Velnar, T.; Gradisnik, L. The importance and role of proprioception in the elderly: A short review. Mater. Socio Med. 2019, 31, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Hammond, T.; Wilson, A. Polypharmacy and falls in the elderly: A literature review. Nurs. Midwifery Stud. 2013, 2, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Kostić, R.; James, N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin. Interv. Aging 2013, 8, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Narici, M.V.; Maganaris, C.N. Adaptability of elderly human muscles and tendons to increased loading. J. Anat. 2006, 208, 433–443. [Google Scholar] [CrossRef]
- Paliwal, Y.; Slattum, P.W.; Ratliff, S.M. Chronic health conditions as a risk factor for falls among the community-dwelling US older adults: A zero-inflated regression modeling approach. Biomed Res. Int. 2017, 2017, 5146378. [Google Scholar]
- Schöne, D.; Freiberger, E.; Sieber, C.C. Influence of skeletal muscles on the risk of falling in old age. Der Internist 2017, 58, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.R.; Mi, P.L.; Huang, S.F.; Chiu, S.L.; Liu, Y.C.; Wang, R.Y. Effects of neuromuscular electrical stimulation on gait performance in chronic stroke with inadequate ankle control—A randomized controlled trial. PLoS ONE 2018, 13, e0208609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, W.R.; Alessio, H.M.; Mills, E.M.; Tong, C. Circumstances and consequences of falls in independent community dwelling older adults. Age Ageing 1997, 26, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Debelle, H.; Harkness-Armstrong, C.; Hadwin, K.; Maganaris, C.N.; O’Brien, T.D. Recovery from a Forward Falling Slip: Measurement of Dynamic Stability and Strength Requirements Using a Split-Belt Instrumented Treadmill. Front. Sports Act. Living 2020, 2, 82. [Google Scholar] [CrossRef] [PubMed]
- Patla, A.E.; Prentice, S.D.; Robinson, C.; Neufeld, J. Visual control of locomotion: Strategies for changing direction and for going over obstacles. J. Exp. Psychol. Hum. Percept. Perform. 1991, 17, 603–634. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, P.E.; Rengifo, C.F.; Rodriguez, L.E.; Sierra, W.A.; Gómez, M.C. Dataset for gait analysis and assessment of fall risk for older adults. Data Brief 2020, 33, 106550. [Google Scholar] [CrossRef]
- Tareef, A. Falls in the elderly: Spectrum and prevention. Can. Fam. Physician 2011, 57, 771–776. [Google Scholar]
- World Health Organization. WHO Global Report on Fall Prevention in Older Age. Geneva. Available online: https://www.who.int/ageing/publications/Falls_prevention7March.pdf (accessed on 18 May 2022).
- Choi, N.G.; Choi, B.Y.; DiNitto, D.M.; Marti, C.N.; Kunik, M.E. Fall-related emergency department visits and hospitalizations among community-dwelling older adults: Examination of health problems and injury characteristics. BMC Geriatr. 2019, 19, 303. [Google Scholar] [CrossRef]
- Owens, P.L.; Russo, C.A.; Spector, W.; Mutter, R. Emergency department visits for injurious falls among the elderly, 2006. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]; Statistical Brief #80. 2009 October; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53603/ (accessed on 18 May 2022).
- Stevens, J.A.; Corso, P.S.; Finkelstein, E.A.; Miller, T.R. The costs of fatal and nonfatal falls among older adults. Inj. Prev. 2006, 12, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical Costs of Fatal and Nonfatal Falls in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, H. Fiscal limits and sovereign default risk in Japan. J. Jpn. Int. Econ. 2015, 38, 13–30. [Google Scholar] [CrossRef]
- Blake, A.J.; Morgan, K.; Bendall, M.J.; Dallosso, H.; Ebrahim, S.B.; Arie, T.H.; Fentem, P.J.; Bassey, E.J. Falls by elderly people at home: Prevalence and associated factors. Age Ageing 1988, 17, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; Begg, R.; Sparrow, W.; Taylor, S. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking. Clin. Biomech. 2011, 26, 962–968. [Google Scholar] [CrossRef]
- Begg, R.; Best, R.; Dell’Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the minimization of trip-related falls. Gait Posture 2007, 25, 191–198. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R. Shoe-Insole Technology for Injury Prevention in Walking. Sensors 2018, 18, 1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, D.A. The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological; University of Waterloo Press: Waterloo, ON, Canada, 1991. [Google Scholar]
- Smeesters, C.; Hayes, W.C.; McMahon, T.A. Disturbance type and gait speed affect fall direction and impact location. J. Biomech. 2001, 34, 309–317. [Google Scholar] [CrossRef]
- Nagano, H.; Levinger, P.; Downie, C.; Hayes, A.; Begg, R. Contribution of lower limb eccentric work and different step responses to balance recovery among older adults. Gait Posture 2015, 42, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Santhiranayagam, B.K.; Lai, D.T.H.; Sparrow, W.A.; Begg, R. Minimum toe clearance events in divided attention treadmill walking in older and young adults: A cross-sectional study. J. NeuroEng. Rehabil. 2015, 12, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, P.M.; Barrett, R.S.; Morrison, S. Toe clearance variability during walking in young and elderly men. Gait Posture 2008, 28, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Best, R.; Begg, R. A method for calculation the probability of tripping while walking. J. Biomech. 2008, 41, 1147–1151. [Google Scholar] [CrossRef]
- Nagano, H.; Said, C.M.; James, L.; Sparrow, W.A.; Begg, R. Biomechanical Correlates of Falls Risk in Gait Impaired Stroke Survivors. Front. Physiol. 2022, 13, 833417. [Google Scholar] [CrossRef] [PubMed]
- Moosabhoy, M.A.; Gard, S.A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 2006, 24, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.C.; Carville, S.F.; Smith, I.C.H.; Rugherford, O.M.; Newham, D.J. Strength, power output and symmetry of leg muscles: Effect of age and history of falling. Eur. J. Appl. Physiol. 2007, 100, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; Sparrow, W.A.; Begg, R.K. Can toe-ground footwear margin alter swing-foot ground clearance? Gait Posture 2015, 42, 214–217. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R. A shoe-insole to improve ankle joint mechanics for injury prevention among older adults. Ergonomics 2021, 64, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.; Kelly, M.; Quinlan, J.F. Changing trends in the mortality rate at 1-year post hip fracture—A systematic review. World J. Orthop. 2019, 10, 166–175. [Google Scholar] [CrossRef]
- DiDomenico, A.; McGorry, R.W.; Chang, C.-C. Biomechanics of a Micro-Slip. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2005, 49, 1297–1301. [Google Scholar] [CrossRef]
- Beschorner, K.E.; Albert, D.L.; Redfern, M.S. Required coefficient of friction during level walking is predictive of slipping. Gait Posture 2016, 48, 256–260. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Suzuki, A.; Hokkirigawa, K. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds. PLoS ONE 2017, 12, e0179817. [Google Scholar]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef]
- Kuo, A.D.; Donelan, J.M.; Ruina, A. Energetic consequences of walking like an inverted pendulum: Step-to-step transitions. Exerc. Sport Sci. Rev. 2005, 33, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Herssens, N.; van Criekinge, T.; Saeys, W.; Truijen, S.; Vereeck, L.; van Rompaey, V.; Hallemans, A. An investigation of thespatio-temporal parameters of gait andmargins of stability throughout adulthood. J. R. Soc. Interface 2020, 17, 20200194. [Google Scholar] [CrossRef] [PubMed]
- Peebles, A.T.; Reinholdt, A.; Bruetsch, A.P.; Lynch, S.G.; Huisinga, J.M. Dynamic margin of stability during gait is altered in persons with multiple sclerosis. J. Biomech. 2016, 49, 3949–3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, M.P.M.; Wilken, J.M.; Dingwell, J.B. Dynamic margins of stability during human walking in destabilizing environments. J. Biomech. 2012, 45, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Watson, F.; Fino, P.C.; Thornton, M.; Heracleous, C.; Loureiro, R.; Leong, J.J.H. Use of the margin of stability to quantify stability in pathologic gait—A qualitative systematic review. BMC Musculoskelet. Disord. 2021, 22, 597. [Google Scholar] [CrossRef]
- Onushko, T.; Boerger, T.; van Dehy, J.; Schmit, B.D. Dynamic stability and stepping strategies of young healthy adults walking on an oscillating treadmill. PLoS ONE 2019, 14, e0212207. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R.; Sparrow, W.A. Computation method for available response time due to tripping at minimum foot clearance. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 4899–4902. [Google Scholar]
- Tun, P.A.; Lachman, M.E. Age differences in reaction time and attention in a national telephone sample of adults: Education, sex, and task complexity matter. Dev. Psychol. 2008, 44, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Yardley, L.; Kirby, S.; Ben-Shlomo, Y.; Gilbert, R.; Whitehead, S.; Todd, C. How likely are older people to take up different fall prevention activities? Prev. Med. 2008, 47, 554–558. [Google Scholar] [CrossRef]
- Menant, J.C.; Steele, J.R.; Menz, H.B.; Munro, B.J.; Lord, S.R. Effects of footwear features on balance and stepping in older people. Gerontology 2008, 54, 18–23. [Google Scholar] [CrossRef]
- Menant, J.C.; Steele, J.R.; Menz, H.B.; Munro, B.J.; Lord, S.R. Optimizing footwear for older people at risk of falls. J. Rehabil. Res. Dev. 2008, 45, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Maki, B.E.; Cheng, K.C.C.; Mansfield, A.; Scovil, C.Y.; Perry, S.D.; Peters, A.L.; McKay, S.; Lee, T.; Marquis, A.; Corbeil, P.; et al. Preventing falls in older adults: New interventions to promote more effective change-in-support balance reactions. J. Electromyogr. Kinesiol. 2008, 18, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, Z.S.; Li, Y.; Feki, A.R.; Dutta, T. The effect of wear on slip-resistance of winter footwear with composite outsoles: A pilot study. Appl. Ergon. 2022, 99, 103611. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jin, J.; Lou, E. Toward slip and fall prevention: Exploring the guidance and challenges of anti-slip footwear. Procedia Eng. 2012, 43, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Hemler, S.L.; Sider, J.R.; Redfern, M.S.; Beschorner, K.E. Gait kinetics impact shoe tread wear rate. Gait Posture 2021, 86, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Feehan, J.; Tripodi, N.; Apostolopoulos, V. Exercise to Prevent and Manage Chronic Disease Across the Lifespan; Academic Press: London, UK, 2022. [Google Scholar]
- Bailey, L.; Ward, M.; DiCosimo, A.; Baunta, S.; Cunningham, C.; Romero-Ortuno, R.; Kenny, R.A.; Purcell, R.; Lannon, R.; McCarroll, K.; et al. Physical and mental health of older people while cocooning during the COVID-19 pandemic, QJM. An. Int. J. Med. 2021, 114, 648–653. [Google Scholar]
- Smith, G.L.; Banting, L.; Eime, R.; O’Sullivan, G.; van Uffelen, J.G.Z. The association between social support and physical activity in older adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 56. [Google Scholar] [CrossRef]
- Winett, R.A.; Williams, D.M.; Davy, B.M. Initiating and maintaining resistance training in older adults: A social cognitive theory-based approach. Br. J. Sports Med. 2009, 43, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Buford, T.W. Hypertension and aging. Ageing Res. Rev. 2016, 26, 96–111. [Google Scholar] [CrossRef] [Green Version]
- He, N.; Zhang, Y.; Zhang, L.; Zhang, S.; Ye, H. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front. Cardiovasc. Med. 2021, 8, 743710. [Google Scholar] [CrossRef]
- Aali, S.; Rezazadeh, F.; Badicu, G.; Grosz, W.R. Effect of Heel-First Strike Gait on Knee and Ankle Mechanics. Medicina 2021, 57, 657. [Google Scholar] [CrossRef] [PubMed]
- Huxel Bliven, K.C.; Anderson, B.E. Core stability training for injury prevention. Sports Health 2013, 5, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlaing, S.S.; Puntumetakul, R.; Khine, E.E.; Boucaut, R. Effects of core stabilization exercise and strengthening exercise on proprioception, balance, muscle thickness and pain related outcomes in patients with subacute nonspecific low back pain: A randomized controlled trial. BMC Musculoskelet. Disord. 2021, 22, 998. [Google Scholar] [CrossRef] [PubMed]
- James, D.C.; Solan, M.C.; Mileva, K.N. Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: A feasibility study. J. Foot Ankle Res. 2018, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Kesar, T.M.; Perumal, R.; Reisman, D.S.; Jancosko, A.; Rudolph, K.S.; Higginson, J.S.; Binder-Macleod, S.A. Functional Electrical Stimulation of Ankle Plantarflexor and Dorsiflexor Muscles: Effects on Poststroke Gait. Stroke 2009, 40, 3821–3827. [Google Scholar] [CrossRef] [Green Version]
- Shimoura, K.; Nishida, Y.; Abiko, S.; Suzuki, Y.; Zeidan, H.; Kajiwara, Y.; Harada, K.; Tatsumi, M.; Nakai, K.; Bito, T.; et al. Immediate effect of neuromuscular electrical stimulation on the abductor hallucis muscle: A randomized controlled trial. Electromagn. Biol. Med. 2020, 39, 257–261. [Google Scholar] [CrossRef]
- York, G.; Chakrabarty, S. A survey on foot drop and functional electrical stimulation. Int. J. Intell. Robot. Appl. 2019, 3, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Pilkar, R.; Yarossi, M.; Nolan, K.J. EMG of the tibialis anterior demonstrates a training effect after utilization of a foot drop stimulator. NeuroRehabilitation 2014, 35, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Nymark, J.R.; Balmer, S.J.; Melis, E.H.; Lemaire, E.D.; Millar, S. Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds. J. Rehabil. Res. Dis. 2005, 42, 523–534. [Google Scholar] [CrossRef]
- Chen, G.; Ma, L.; Song, R.; Li, L.; Wang, X.; Tong, K. Speed-adaptive control of functional electrical stimulation for dropfoot correction. J. Neuroeng. Rehabil. 2018, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.P.; Hsu, N.W.; Lin, C.H.; Chen, H.; Tsao, H.; Lo, S.; Chou, P. Relationship between muscle strength and fall episodes among the elderly: The Yilan study, Taiwan. BMC Geriatr. 2018, 18, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, S.; Kadone, H.; Shimizu, Y.; Koda, M.; Noguchi, H.; Takahashi, H.; Watanabe, H.; Hada, Y.; Sankai, Y.; Yamazaki, M. Development of a New Ankle Joint Hybrid Assistive Limb. Medicina 2022, 58, 395. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagano, H. Gait Biomechanics for Fall Prevention among Older Adults. Appl. Sci. 2022, 12, 6660. https://doi.org/10.3390/app12136660
Nagano H. Gait Biomechanics for Fall Prevention among Older Adults. Applied Sciences. 2022; 12(13):6660. https://doi.org/10.3390/app12136660
Chicago/Turabian StyleNagano, Hanatsu. 2022. "Gait Biomechanics for Fall Prevention among Older Adults" Applied Sciences 12, no. 13: 6660. https://doi.org/10.3390/app12136660
APA StyleNagano, H. (2022). Gait Biomechanics for Fall Prevention among Older Adults. Applied Sciences, 12(13), 6660. https://doi.org/10.3390/app12136660