Application of Reeds as Carbon Source for Enhancing Denitrification of Low C/N Micro-Polluted Water in Vertical-Flow Constructed Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Devices and Operation
2.3. Experimental Sampling and Analysis
2.3.1. Analytical Techniques
2.3.2. Water Sampling and Analysis
2.3.3. Denitrogenation Functional Gene Abundance Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Nitrogen Removal Effect of Reed Carbon Source Constructed Wetland
3.1.1. Removal Effect of NH4+-N
3.1.2. Removal Effect of NO3−-N
3.1.3. Removal Effect of NO2−-N
3.2. Effects of Reed Carbon Source on COD and pH of Constructed Wetland Effluent
3.2.1. Changes in COD of Wetland Effluent
3.2.2. Changes in pH of Wetland Effluent
3.3. Effects of Reed Carbon Source on Denitrification Function Genes
3.3.1. Changes in Abundances of amoA, nxrB and hzo Genes
3.3.2. Changes in Abundances of nirK, nirS and nrfA Genes
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Wang, X.; Zhang, H.; Wu, H. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour. Technol. 2017, 241, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xie, H.; Ngo, H.H.; Guo, W.; Zhang, J.; Liu, C.; Liang, S.; Hu, Z.; Yang, Z.; Zhao, C. Microbial abundance and community in subsurface flow constructed wetland microcosms: Role of plant presence. Environ. Sci. Pollut. Res. 2015, 23, 4036–4045. [Google Scholar] [CrossRef] [PubMed]
- Amado, L.; Albuquerque, A.; Espírito Santo, A. Influence of stormwater infiltration on the treatment capacity of a LECA-based horizontal subsurface flow constructed wetland. Ecol. Eng. 2012, 39, 16–23. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.C.; Sun, S.; Rehman, M.; He, S.; Zhou, W. Nitrogen removal through collaborative microbial pathways in tidal flow constructed wetlands. Sci. Total Environ. 2021, 758, 143594. [Google Scholar] [CrossRef] [PubMed]
- Pfannerstill, M.; Kühling, I.; Hugenschmidt, C.; Trepel, M.; Fohrer, N. Reactive ditches: A simple approach to implement denitrifying wood chip bioreactors to reduce nitrate exports into aquatic ecosystems? Environ. Earth Sci. 2016, 75, 1. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.C.; Hu, Y.; Pu, Y.; Huang, J.; Hao Ngo, H.; Zeng, Y.; Li, Y. Nitrogen removal enhancement using lactic acid fermentation products from food waste as external carbon sources: Performance and microbial communities. Bioresour. Technol. 2018, 256, 259–268. [Google Scholar] [CrossRef]
- Zhang, Q.; Ji, F.; Xu, X. Effects of physicochemical properties of poly-ε-caprolactone on nitrate removal efficiency during solid-phase denitrification. Chem. Eng. J. 2016, 283, 604–613. [Google Scholar] [CrossRef]
- Sánchez, M.P.; Sulbarán-Rangel, B.C.; Tejeda, A.; Zurita, F. Evaluation of three lignocellulosic wastes as a source of biodegradable carbon for denitrification in treatment wetlands. Int. J. Environ. Sci. Technol. 2020, 17, 4679–4692. [Google Scholar] [CrossRef]
- Zhang, L.; Han, X.; Yuan, B.; Zhang, A.; Feng, J.; Zhang, J. Mechanism of purification of low-pollution river water using a modified biological contact oxidation process and artificial neural network modeling. J. Environ. Chem. Eng. 2021, 9, 104832. [Google Scholar] [CrossRef]
- Jia, L.; Wang, R.; Feng, L.; Zhou, X.; Lv, J.; Wu, H. Intensified nitrogen removal in intermittently-aerated vertical flow constructed wetlands with agricultural biomass: Effect of influent C/N ratios. Chem. Eng. J. 2018, 345, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, S.; Li, Y.; Kong, F.; Xi, H.; Liu, Y. Corn Straw as a Solid Carbon Source for the Treatment of Agricultural Drainage Water in Horizontal Subsurface Flow Constructed Wetlands. Water 2018, 10, 511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, L.; Mei, C.; Yi, L.; Hua, G. Effects of Plant Material as Carbon Sources on TN Removal Efficiency and N2O Flux in Vertical-Flow-Constructed Wetlands. Water Air Soil Pollut. 2014, 225, 2181. [Google Scholar] [CrossRef]
- Ma, X.X.; Gong, C.; Guo, J.X.; Wang, L.C.; Xu, Y.Y.; Zhao, C.F. Water Pollution Characteristics and Source Apportionment in Rapid Urbanization Region of the Lower Yangtze River: Considering the Qinhuai River Catchment. Environ. Sci. 2021, 42, 3291–3303. [Google Scholar] [CrossRef]
- Administration, E.P. Monitoring and Analysis Methods of Water and Wastewater, 4th ed.; China Environmental Press: Beijing, China, 2002; pp. 266–281. [Google Scholar]
- Liang, Y.; Wu, C.; Wei, X.; Liu, Y.; Chen, X.; Qin, H.; Wu, J.; Su, Y.; Ge, T.; Hu, Y. Characterization of nirS- and nirK-containing communities and potential denitrification activity in paddy soil from eastern China. Agric. Ecosyst. Environ. 2021, 319, 107561. [Google Scholar] [CrossRef]
- Rotthauwe, J.H.; Witzel, K.P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microb. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pester, M.; Maixner, F.; Berry, D.; Rattei, T.; Koch, H.; Lücker, S.; Nowka, B.; Richter, A.; Spieck, E.; Lebedeva, E.; et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ. Microbiol. 2014, 16, 3055–3071. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.C.; Hooper, A.B.; Klotz, M.G.; Woebken, D.; Lam, P.; Kuypers, M.M.M.; Pommerening-Roeser, A.; Op Den Camp, H.J.M.; Jetten, M.S.M. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ. Microbiol. 2008, 10, 3140–3149. [Google Scholar] [CrossRef]
- Henry, S.; Baudoin, E.; López-Gutiérrez, J.C.; Martin-Laurent, F.; Brauman, A.; Philippot, L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Meth. 2004, 59, 327–335. [Google Scholar] [CrossRef]
- Liu, B.; Morkved, P.T.; Frostegard, A.; Bakken, L.R. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 2010, 72, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Welsh, A.; Chee-Sanford, J.C.; Connor, L.M.; Loffler, F.E.; Sanford, R.A. Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl. Environ. Microb. 2014, 80, 2110–2119. [Google Scholar] [CrossRef] [Green Version]
- Białowiec, A.; Davies, L.; Albuquerque, A.; Randerson, P.F. Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: Redox potential in the root zone. J. Environ. Manag. 2012, 97, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, B.; Zhang, W.; Hu, C.; An, S. Effects of plant and influent C:N:P ratio on microbial diversity in pilot-scale constructed wetlands. Ecol. Eng. 2010, 36, 441–449. [Google Scholar] [CrossRef]
- Albuquerque, A.; Oliveira, J.; Semitela, S.; Amaral, L. Evaluation of the effectiveness of horizontal subsurface flow constructed wetlands for different media. J. Environ. Sci. 2010, 22, 820–825. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Chang, Y.; Chu, Z.; Zhao, Y.; Liu, R. Enhanced Nutrients Removal Using Reeds Straw as Carbon Source in a Laboratory Scale Constructed Wetland. Int. J. Environ. Res. Pub. Health 2018, 15, 1081. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, A.; Oliveira, J.; Semitela, S.; Amaral, L. Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands. Bioresour. Technol. 2009, 100, 6269–6277. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Dai, X.; Chai, X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ. 2018, 634, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Yu, D.; Wang, X.; Wang, Q.; He, T.; Zhao, J. Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source. Bioresour. Technol. 2021, 320, 124405. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, L.; Lu, H.; Lu, S.; Zhao, X.; Liu, F. Effect of the Influent Substrate Concentration on Nitrogen Removal from Summer to Winter in Field Pilot-Scale Multistage Constructed Wetland—Pond Systems for Treating Low-C/N River Water. Sustainability 2021, 13, 12456. [Google Scholar] [CrossRef]
- Yu, L.; Chen, T.; Xu, Y. Effect of corn cobs as external carbon sources on nitrogen removal in constructed wetlands treating micro-polluted river water. Water Sci. Technol. 2019, 79, 1639–1647. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Fu, Z.; Qiao, H.; Liu, F. Assessing wetland nitrogen removal and reed (Phragmites australis) nutrient responses for the selection of optimal harvest time. J. Environ. Manag. 2021, 280, 111783. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Sawatdeenarunat, C.; Sung, S.; Khanal, S.K. Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation. Bioresour. Technol. 2017, 237, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, Q.; Hu, Y.; Ding, J.; Ma, Q.; Zong, K.; Yang, Z. Effect of carbon source derived from macrophytes on microbial denitrification in constructed wetlands: Role of plant species. Bioresour. Technol. Rep. 2019, 7, 100217. [Google Scholar] [CrossRef]
- Soliman, M.; Eldyasti, A. Ammonia-Oxidizing Bacteria (AOB): Opportunities and applications—A review. Rev. Environ. Sci. Biotechnol. 2018, 17, 285–321. [Google Scholar] [CrossRef]
- Hong, Y.; Jiao, L.; Wu, J. New primers, taxonomic database and cut-off value for processing nxrB gene high-throughput sequencing data by MOTHUR. J. Microbiol. Meth. 2020, 173, 105939. [Google Scholar] [CrossRef] [PubMed]
- van der Star, W.R.L.; van de Graaf, M.J.; Kartal, B.; Picioreanu, C.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine. Appl. Environ. Microb. 2008, 74, 4417–4426. [Google Scholar] [CrossRef] [Green Version]
- Waller, L.J.; Evanylo, G.K.; Krometis, L.H.; Strickland, M.S.; Wynn-Thompson, T.; Badgley, B.D. Engineered and Environmental Controls of Microbial Denitrification in Established Bioretention Cells. Environ. Sci. Technol. 2018, 52, 5358–5366. [Google Scholar] [CrossRef]
- Li, X.; Song, C.; Zhou, Z.; Xiao, J.; Wang, S.; Yang, L.; Cao, X.; Zhou, Y. Comparison of Community and Function of Dissimilatory Nitrate Reduction to Ammonium (DNRA) Bacteria in Chinese Shallow Lakes with Different Eutrophication Degrees. Water 2020, 12, 174. [Google Scholar] [CrossRef] [Green Version]
Parameters | COD | TN | NH4+-N | NO3−-N | TP | pH |
---|---|---|---|---|---|---|
concentration mg/L | 30.00 | 6.00 | 4.00 | 2.00 | 0.30 | 7.00 |
Nitrogen Cycle Step | Gene | Enzyme | Catalytic Function |
---|---|---|---|
Nitrification | amoA | Ammonia monooxygenase | NH4+ → NO2− |
Nitrification | nxrB | Nitrite oxidoreductase | NO2− → NO3− |
Anammox | hzo | Hydrazine oxidase | N2H2 → N2 |
Denitrification | nirK and nirS | Nitrite reductase | NO2− → NO |
DNRA | nrfA | Nitrite reductase | NO2− → NH4+ |
Targeting Gene | Primer | Sequence (5′-3′) | Reference |
---|---|---|---|
amoA | amoA-1F amoA-2R | GGGGTTTCTACTGGTGGT CCCCTCKGSAAAGCCTTCTTC | Rotthauwe et al., 1997 [16] |
nxrB | nxrB-169F nxrB-638R | TACATGTGGTGGAACA CGGTTCTGGTCRATCA | Pester et al., 2014 [17] |
hzo | hzocl1F1 hzocl1R2 | TGYAAGACYTGYCAYTGG ACTCCAGATRTGCTGACC | Schmid et al., 2008 [18] |
nirK | nirK-1aCuf nirK-3Cur | ATCATGCTSCTGCCGCG GCCTCGATCAGRTTGTGGTT | Henry et al., 2004 [19] |
nirS | cd3af r3cd | GTSAACGTSAAGGARACSGG GASTTCGGRTGSGTCTTGA | Liu et al., 2010 [20] |
nrfA | nrfAF2aw nrfAR1 | CARTGYCAYGTBGARTA TWNGGCATRTGRCARTC | Welsh et al., 2014 [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Zhang, Y.; Zhang, T.; You, Z.; Shah, K.J.; Kim, H. Application of Reeds as Carbon Source for Enhancing Denitrification of Low C/N Micro-Polluted Water in Vertical-Flow Constructed Wetland. Appl. Sci. 2022, 12, 6756. https://doi.org/10.3390/app12136756
Tao J, Zhang Y, Zhang T, You Z, Shah KJ, Kim H. Application of Reeds as Carbon Source for Enhancing Denitrification of Low C/N Micro-Polluted Water in Vertical-Flow Constructed Wetland. Applied Sciences. 2022; 12(13):6756. https://doi.org/10.3390/app12136756
Chicago/Turabian StyleTao, Jiaqing, Ying Zhang, Ting Zhang, Zhaoyang You, Kinjal J. Shah, and Hyunook Kim. 2022. "Application of Reeds as Carbon Source for Enhancing Denitrification of Low C/N Micro-Polluted Water in Vertical-Flow Constructed Wetland" Applied Sciences 12, no. 13: 6756. https://doi.org/10.3390/app12136756
APA StyleTao, J., Zhang, Y., Zhang, T., You, Z., Shah, K. J., & Kim, H. (2022). Application of Reeds as Carbon Source for Enhancing Denitrification of Low C/N Micro-Polluted Water in Vertical-Flow Constructed Wetland. Applied Sciences, 12(13), 6756. https://doi.org/10.3390/app12136756