A Novel FFT_YOLOX Model for Underwater Precious Marine Product Detection
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Overview of YOLOX
2.2. FFT_YOLOX
2.3. FFT_Filter
3. Experiment and Discussion
3.1. Dataset
3.2. Results and Comparison
3.3. Ablation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, C.-J.; Sun, D.-W. Retrospective shading correction of confocal laser scanning microscopy beef images for three-dimensional visualization. Food Bioprocess Technol. 2007, 2, 167–176. [Google Scholar] [CrossRef]
- Duan, Y.; Stien, L.H. An automatic counting system for transparent pelagic fish eggs based on computer vision. Aquac. Eng. 2015, 67, 8–13. [Google Scholar] [CrossRef]
- Yoon, S.C.; Lawrence, K.C. Automatic counting and classification of bacterial colonies using hyperspectral imaging. Food Bioprocess Technol. 2015, 8, 2047–2065. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H. Visual-adaptation-mechanism based underwater object extraction. Opt. Laser Technol. 2014, 56, 119–130. [Google Scholar] [CrossRef]
- Ravanbakhsh, M. Automated fish detection in underwater images using shape-based level sets. Photogrammetric. Rec. 2015, 30, 46–62. [Google Scholar] [CrossRef]
- Qiao, X.; Bao, J.H. An automatic active contour method for sea cucumber segmentation in natural underwater environments. Comput. Electron. Agric. 2017, 135, 134–142. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3 December 2012. [Google Scholar]
- Karen, S.; Andrew, Z. Very Deep Convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7 May 2015. [Google Scholar]
- Huang, G.; Liu, Z.; Pleiss, G. Densely Connected Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22 October 2017. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P. Aggregated residual transformations for deep neural network. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21 July 2017. [Google Scholar]
- Gao, S.H.; Cheng, M.M.; Zhao, K. Res2Net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 652–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borji, A.; Cheng, M.M. Salient object detection: A survey. Comput. Vis. Media 2019, 5, 117–150. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; Cheng, M.M. Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 815–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; He, K.; Girshick, R. Faster r-cnn: Towards realtime object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 8 December 2015. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Kong, T.; Chen, C.H. SOLO: Segmenting objects by locations. In Proceedings of the IEEE International Conference on Computer Vision, Seattle, WA, USA, 13 June 2020. [Google Scholar]
- Wang, X.L.; Zhang, R.F.; Kong, T. SOLOv2: Dynamic and fast instance segmentation. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6 December 2020. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.Y. YOLACT: Real-time instance segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October 2019. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the Advances in IEEE International Conference on Computer Vision, Columbus, OH, USA, 24 June 2014. [Google Scholar]
- Dai, J.F.; Li, Y.; He, K.M. R-FCN: Object detection via resion-based fully convolutional networks. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5 December 2016. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13 December 2015. [Google Scholar]
- Joseph, R.; Santosh, D.; Ross, G. You only look once: Real-time object detection. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Boston, MA, USA, 7 June 2015. [Google Scholar]
- Joseph, R.; Ali, F. YOLO9000: Better, Faster, Stronger. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016. [Google Scholar]
- Joseph, R.; Ali, F. YOLOv3: An Incremental Improvement. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18 June 2018. [Google Scholar]
- Alexey, B.; Chien, Y.W.; Hong, Y.M.L. YOLOv4: Optimal Sped and Accuracy of Object Detection. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Seattle, WA, USA, 16 June 2020. [Google Scholar]
- Ge, Z.; Lilu, S.T.; Wang, F. YOLOX: Exceeding YOLO Series in 2021. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Virtual, 19 June 2021. [Google Scholar]
- Cai, K.W.; Miao, X.Y. A modified YOLOv3 model for fish detection based on MobileNetv1 as backbone. Aquac. Eng. 2020, 91, 102–117. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.L.; Chen, B. MobileNets: Efficient convolutional neural networks for mobile vision qpplications. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21 July 2017. [Google Scholar]
- Sandler, M.; Howard, A.G.; Zhu, M.L. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18 June 2018. [Google Scholar]
- Sandler, M.; Howard, A.G.; Chu, G. Searching for MobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October 2019. [Google Scholar]
- Sung, M.; Yu, S.C.; Girdhar, Y. Vision based real-time fish detection using convolutional neural network. In Proceedings of the IEEE Oceans, Aberdeen, UK, 19 June 2017. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q. Deep Residual Learning for Image Recognition. In Proceedings of the Advances in Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016. [Google Scholar]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Rao, Y.M.; Zhao, W.L.; Zhu, Z. Global filter networks for image classification. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6 December 2021. [Google Scholar]
Model | AP0.5−0.95 | AP0.5 | AP0.75 | APsmall | APmedium | APlarge | Params | FLOPs |
---|---|---|---|---|---|---|---|---|
YOLOX-S | 0.480 | 0.829 | 0.506 | 0.207 | 0.418 | 0.531 | 8.94 M | 26.64 G |
FFT_YOLOX | 0.483 | 0.832 | 0.510 | 0.242 | 0.421 | 0.533 | 8.49 M | 25.18 G |
Model | Holothurian | Echinus | Scallop | Starfish | Params | FLOPs |
---|---|---|---|---|---|---|
YOLOX-S | 0.375 | 0.480 | 0.476 | 0.498 | 8.94 M | 26.64 G |
FFT_YOLOX | 0.377 | 0.485 | 0.472 | 0.501 | 8.49 M | 25.18 G |
Model | Dark 2 | Dark 3 | Dark 4 | Dark 5 | AP0.5−0.95 | Params | FLOPs |
---|---|---|---|---|---|---|---|
YOLOX-S | - | - | - | - | 0.480 | 8.94 M | 26.64 G |
FFT_YOLOX (exp2) | 0.483 | 8.49 M | 25.18 G | ||||
FFT_YOLOX (exp3) | - | 0.481 | 8.50 M | 25.36 G | |||
FFT_YOLOX (exp4) | - | - | 0.482 | 8.54 M | 25.59 G | ||
FFT_YOLOX (exp5) | - | - | - | 0.482 | 8.71 M | 26.46 G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Yang, Z.; Pang, H.; Zhang, T.; Cai, K. A Novel FFT_YOLOX Model for Underwater Precious Marine Product Detection. Appl. Sci. 2022, 12, 6801. https://doi.org/10.3390/app12136801
Wang P, Yang Z, Pang H, Zhang T, Cai K. A Novel FFT_YOLOX Model for Underwater Precious Marine Product Detection. Applied Sciences. 2022; 12(13):6801. https://doi.org/10.3390/app12136801
Chicago/Turabian StyleWang, Peng, Zhipeng Yang, Hongshuai Pang, Tao Zhang, and Kewei Cai. 2022. "A Novel FFT_YOLOX Model for Underwater Precious Marine Product Detection" Applied Sciences 12, no. 13: 6801. https://doi.org/10.3390/app12136801
APA StyleWang, P., Yang, Z., Pang, H., Zhang, T., & Cai, K. (2022). A Novel FFT_YOLOX Model for Underwater Precious Marine Product Detection. Applied Sciences, 12(13), 6801. https://doi.org/10.3390/app12136801