Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology
2.1.1. Study Design
2.1.2. Inclusion Criteria
2.1.3. Exclusion Criteria
2.2. Expression Analysis
RNA Extraction/Quantitative RT-PCR
2.3. Enzyme-Linked Immunosorbent Assay
2.4. DNA Molecular Docking&Protein-Ligand Docking
Preparation of Ligand and Receptor Molecule
2.5. Statistical Analysis
3. Results
3.1. BMI Association with c-myc and Estradiol
3.2. Age Related c-myc Regulation in Breast Cancer Lymphocytes
3.3. Expressional Level of ESR1 in Leucocytes of Breast Cancer Patients
3.4. Crosstalk between c-myc, ER and Estrogen in Breast Cancer Leucocytes
3.5. Correlation of c-myc and Estradiol in Breast Cancer Lymphocytes
3.6. Up-Regulation of c-myc & Estradiol at Metastatic Stages
3.7. Multilinear Regression and Correlation Analysis between Estradiol, c-myc, ER, and Stages of Breast Cancer Patients
3.8. Molecular Docking
3.8.1. Genetic c-myc and Receptor Bound Estradiol
3.8.2. Root Mean Square Deviation (RMSD)
3.8.3. Prospective TF Targets of ESR1 Using Chip-Seq Atlas
4. Discussion
4.1. Positive Association of c-myc and Estradiol Exists in Peripheral Bc Blood
4.2. c-mycIs an Estrogen-Dependent Gene in Breast Cancer
4.3. Estradiol Affinity as Ligand to the DNA Structure
4.4. Anticancer Drug Screening Using Docking
ScRNA-Seq Data and Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Breast cancer |
c-myc | Homo sapiens MYC proto-oncogene, |
ER/ERα/ Erβ | Estrogen Receptor/estrogen receptor alpha/estrogen receptor beta |
HER2/neu | human epidermal growth factor receptor 2 |
E-boxes | Enhancer boxes |
HATs | histone acetyltransferases |
CpG islands | CpG islands are short stretches of DNA with an unusually high |
GC. | content and a higher frequency of CpG dinucleotides. |
EREs | Estrogen response elements |
AP-1 | Activator protein 1 |
SP-1 | specificity protein |
CDKs | Cyclin-dependent kinases |
NRs | nuclear transcriptional activators |
p21 | CDK-interacting protein 1 |
ERP | exported repetitive protein) |
TRRAP | Transformation/Transcription Domain Associated Protein |
AF-1/2 | activation function 1/2 |
N.O.R.I | Nuclear Medicine Oncology and Radiotherapy Institute |
EDTA | Ethylenediamine tetraacetic acid |
mRNA | messenger ribonucleic acid |
HIV | human immunodeficiency virus |
HCV | hepatitis C virus |
RT-PCR | Reverse transcription polymerase chain reaction |
Ct | cycle threshold |
SEM | standard error of mean |
SD | standard deviation |
DNA | deoxyribonucleic acid |
bp | base pair |
ANOVA | Analysis of Variance |
WHO | world health organization |
BMI | body mass index |
N | number of samples |
df | degree of freedom |
RE | relative expression |
ME | Mean expression |
LG score | Levitt-Gerstein score |
Max Sub | score maximum subarray score |
kcal/mol | kilo calorie per mole |
References
- Hua, H.; Zhang, H.; Kong, Q.; Jiang, Y. Mechanisms for estrogen receptor expression in human cancer. Exp. Hematol. Oncol. 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W.; Helzlsouer, K.J.; Alberg, A.J.; Strickler, H.D. Endogenous Hormones and Breast Cancer Collaborative Group. Circulating sex hormones and breast cancer risk factors in postmenopausal women: Reanalysis of 13 studies. Br. J. Cancer 2011, 105, 709–722. [Google Scholar]
- Faheem, M.; Mahmood, H.; Khurram, M.; Qasim, U.; Irfan, J. Estrogen receptor, progesterone receptor, and Her 2 Neu positivity and its association with tumour characteristics and menopausal status in a breast cancer cohort from northern Pakistan. Ecancermedicalscience 2012, 6, 283. [Google Scholar] [PubMed]
- McEwan, M.V.; Eccles, M.R.; Horsfield, J.A. Cohesin is required for activation of MYC by estradiol. PLoS ONE 2012, 7, e49160. [Google Scholar] [CrossRef] [Green Version]
- Zeller, K.I.; Zhao, X.; Lee, C.W.; Chiu, K.P.; Yao, F.; Yustein, J.T.; Ooi, H.S.; Orlov, Y.L.; Shahab, A.; Yong, H.C.; et al. Global mapping of c-myc binding sites and target gene networks in human B cells. Proc. Natl. Acad. Sci. USA 2006, 103, 17834–17839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.S.; Liu, X.S.; Brodsky, A.S.; Li, W.; Meyer, C.A.; Szary, A.J.; Eeckhoute, J.; Shao, W.; Hestermann, E.V.; Geistlinger, T.R.; et al. Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1. Cell 2005, 122, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prall, O.W.J.; Rogan, E.M.; Musgrove, E.A.; Watts, C.K.W.; Sutherland, R.L. C-myc or Cyclin D1 Mimics Estrogen Effects on Cyclin E-Cdk2 Activation and Cell Cycle Reentry. Mol. Cell. Biol. 1998, 18, 4499–4508. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.S.L.; Jin, V.X.; Fan, M.; Smith, L.T.; Liyanarachchi, S.; Yan, P.S.; Leu, Y.-W.; Chan, M.W.Y.; Plass, C.; Nephew, K.P.; et al. Combinatorial Analysis of Transcription Factor Partners Reveals Recruitment of c-myc to Estrogen Receptor-α Responsive Promoters. Mol. Cell 2006, 21, 393–404. [Google Scholar] [CrossRef]
- Clusan, L.; Le Goff, P.; Flouriot, G.; Pakdel, F. A Closer Look at Estrogen Receptor Mutations in Breast Cancer and Their Implications for Estrogen and Antiestrogen Responses. Int. J. Mol. Sci. 2021, 22, 756. [Google Scholar] [CrossRef]
- Viedma-Rodríguez, R.; Baiza-Gutman, L.; Salamanca-Gómez, F.; Diaz-Zaragoza, M.; Martínez-Hernández, G.; Esparza-Garrido, R.R.; Velázquez-Flores, M.A.; Arenas-Aranda, D. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncol. Rep. 2014, 32, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Conrad, S.E. c-myc Suppresses p21WAF1/CIP1 Expression during Estrogen Signaling and Antiestrogen Resistance in Human Breast Cancer Cells. J. Biol. Chem. 2005, 280, 17617–17625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubik, D.; Shiu, R.P. Transcriptional regulation of c-myc oncogene expression by estrogen in hormone-responsive human breast cancer cells. J. Biol. Chem. 1988, 263, 12705–12708. [Google Scholar] [CrossRef]
- Oloomi, M.; Moazzezy, N.; Bouzari, S. Comparing blood versus tissue-based biomarkers expression in breast cancer patients. Heliyon 2020, 6, e03728. [Google Scholar] [CrossRef] [PubMed]
- Kulkoyluoglu-Cotul, E.; Arca, A.; Madak-Erdogan, Z. Crosstalk between Estrogen Signaling and Breast Cancer Metabolism. Trends Endocrinol. Metab. 2019, 30, 25–38. [Google Scholar] [CrossRef]
- Wang, C.; Mayer, J.A.; Mazumdar, A.; Fertuck, K.; Kim, H.; Brown, M.; Brown, P.H. Estrogen Induces c-myc Gene Expression via an Upstream Enhancer Activated by the Estrogen Receptor and the AP-1 Transcription Factor. Mol. Endocrinol. 2011, 25, 1527–1538. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, S. Promoter 2.0: For the recognition of PolII promoter sequences. Bioinform. Oxf. Engl. 1999, 15, 356–361. [Google Scholar] [CrossRef]
- Solovyev, V.V.; Shahmuradov, I.A.; Salamov, A.A. Identification of Promoter Regions and Regulatory Sites. In Computational Biology of Transcription Factor Binding; Humana Press: Totowa, NJ, USA, 2010; pp. 57–83. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, USA. Available online: http://www.rstudio.com/ (accessed on 30 March 2020).
- Yan, Y.; Tao, H.; He, J.; Huang, S.Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef]
- Liu, Y.; Grimm, M.; Dai, W.T.; Hou, M.C.; Xiao, Z.X.; Cao, Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin. 2020, 41, 138–144. [Google Scholar] [CrossRef]
- Data, R.E.; Williams, S.B.; Roberts, D.D.; Gralnick, H.R. Platelets adhere to sulfatides by von Willebrand factor dependent and independent mechanisms. Thromb. Haemost. 1991, 5, 581–587. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and 581 functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, 10800. [Google Scholar] [CrossRef] [PubMed]
- Benz, C.C. Impact of aging on the biology of breast cancer. Crit. Rev. Oncol. Hematol. 2008, 66, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Y.; Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 2002, 295, 2465–2468. [Google Scholar] [CrossRef] [PubMed]
- Wierstra, I.; Alves, J. The c-myc promoter: Still MysterY and challenge. Adv. Cancer Res. 2008, 99, 113–333. [Google Scholar] [PubMed]
- Gilad, Y.; Senderowitz, H. Docking studies on DNA intercalators. J. Chem. Inf. Model. 2014, 54, 96–107. [Google Scholar] [CrossRef]
- Aldakheel, F.M.; Alduraywish, S.A.; Mateen, A.; Alqahtani, M.S.; Syed, R. Molecular and docking studies of tetramethoxy hydroxyflavone compound from Artemisia absinthium against carcinogens found in cigarette smoke. Open Chem. 2021, 19, 1148–1154. [Google Scholar] [CrossRef]
- Jin, L.; Li, Y. Structural and functional insights into nuclear receptor signaling. Adv. Drug Deliv. Rev. 2010, 62, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
Reference BMI Range | ||
---|---|---|
BMI Range | Status | |
0 | 18.5 | Underweight |
18.5 | 24.9 | Normal weight |
24.9 | 29.9 | Overweight |
29.9 | 30 | Obese |
C-myc-F (forward) | 5’-TCGGATTCTCTGCTCTCCTC-3′ | Product Size | Annealing Temperature |
C-myc-R (reverse) | 5’-CCTGCCTCTTTTCCACAGAA-3′ | 157 bp | 57 °C |
β-globin (forward) | 5′-GCTTCTGACACAACTGTGTTCACTAGC -3′ | Product Size | Annealing Temperature |
β-globin (reverse) | 5′-CACCAACTTCATCCACGTTCACC-3′ | 115 bp | 59 °C |
ESR1 (forward) | 5′-GCTTACTGACCAACCTGGCAGA-3′ | Product Size | Annealing Temperature |
ESR1 (reverse) | 5′-GGATCTCTAGCCAGGCACATTC-3′ | 151 bp | 60 °C |
Model No. | Ligand | Receptor | RMSD | Binding Energy |
---|---|---|---|---|
Model 1 | 17β-estradiol | C-myc (Crystalized B-DNA) 500 bp around ERE site | <2.0 Å | −227.9 kJ/mol |
Model 10 | As above | As above | 1.59 Å | −217 kJ/mol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, N.; Khan, S.; Manzoor, S.; Abubakar, M.; Sami, R.; Alharthy, S.A.; Baty, R.S.; Jafri, I.; Alsubhi, N.H.; Qari, S.H.; et al. Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter. Appl. Sci. 2022, 12, 6853. https://doi.org/10.3390/app12146853
Rehman N, Khan S, Manzoor S, Abubakar M, Sami R, Alharthy SA, Baty RS, Jafri I, Alsubhi NH, Qari SH, et al. Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter. Applied Sciences. 2022; 12(14):6853. https://doi.org/10.3390/app12146853
Chicago/Turabian StyleRehman, Nazia, Shahrukh Khan, Shumaila Manzoor, Muhammad Abubakar, Rokayya Sami, Saif A. Alharthy, Roua S. Baty, Ibrahim Jafri, Nouf H. Alsubhi, Sameer H. Qari, and et al. 2022. "Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter" Applied Sciences 12, no. 14: 6853. https://doi.org/10.3390/app12146853
APA StyleRehman, N., Khan, S., Manzoor, S., Abubakar, M., Sami, R., Alharthy, S. A., Baty, R. S., Jafri, I., Alsubhi, N. H., Qari, S. H., & Shahid, R. (2022). Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter. Applied Sciences, 12(14), 6853. https://doi.org/10.3390/app12146853