Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey
Abstract
:1. Introduction
2. Major Trends
3. Neural Activity Segmentation Pipeline
3.1. Motion Correction
3.2. Filtering
3.3. Source Extraction (Neuron Segmentation)
3.4. Spike Deconvolution
4. Signal/Image Processing-Based Methods
5. Matrix Factorization-Based Methods
5.1. Independent Component Analysis-Based Approaches
5.2. Non-Negative Matrix Factorization-Based Approaches
6. Machine Learning-Based Methods
6.1. ML Methods Applied to Summary Images
6.2. ML Methods Applied to 3D Calcium Imaging Stacks
7. Summary of Performance on Public Benchmarks, Applications and Recommendations
- In the general case, variables W refer to image width, H to image height, D to the depth of the calcium image stack and N to the number of images needed at inference time (some matrix factorization methods need to compute the segmentation using the whole data set).
- For the iterative methods (at inference time) we use m to refer to the number of iterations needed for reaching convergence.
- In the deep learning approaches, we use variable K to denote the average cost of a forward step on a convolutional layer, and F to denote the average cost of a fully connected layer. These costs can be understood as an upper bound to the temporal complexity at testing time, as usually pooling layers reduce the internal feature maps making the pipeline more efficient. The variable F might also be sensible to the size and the number of filters on each convolutional layer.
- We refer with the notation to the algorithms where the authors claim that real-time testing performance is achieved.
7.1. Applications and Recommendations
- Neuroscientists working on developing semantic neuronal networks from calcium imaging data recorded at sub-cellular resolutions.
- Neuroscientists working to understand the behaviour of neurons affected by some neurodegenerative diseases.
- Researchers working on understanding the firing patterns of neurons as a response to some physical stimuli.
- Researchers working to understand neurons behaviour in detail and then build in silico model of these neurons which in turn can be used to develop neural networks which mimic the behaviour of their biological counterparts.
- Last but not the least, researchers working on neuromorphic computing who want to understand the operations of neuronal networks at sub-cellular resolutions.
- Signal/image processing-based methods
- –
- Signal/image processing-based approaches are usually not complex and computationally expensive. A little background in fundamental signal/image processing is enough to get the gist of these methods.
- –
- In order to research the effect of various parameters on the outcome of these methods, the researchers need to know all the related signal/image processing concepts in detail.
- –
- For those researchers who are not from a computational background (neuroscientists), the pipeline if these methods is easy to follow and can be used a set of tools with few parameters to tweak.
- –
- These methods are ideal for neuron segmentation in in vitro datasets since these datasets do not have the overlapping neurons problem as much as the in vivo datasets.
- –
- These methods tend to be not computationally as expensive, which is why the are also recommended if computational power is an issue. Moreover, without investing a lot on expensive computational hardware, these methods (or at least some of them) can be easily deployed for real-time or online inference.
- Matrix factorization-based methods
- –
- The base framework of these methods is a bit harder to grasp and can be computationally expensive.
- –
- For those researchers who are not from a computer science background, these methods might pose a challenge since the success/failure of these methods depend heavily on the choice of factorization framework, background model and baseline fluorescence model.
- –
- These methods have a modest performance on in vivo datasets as well, so they can be used for neuron segmentation in in vivo datasets with acceptable performance.
- –
- Since these methods tend to be computationally expensive, they are not recommended if computational cost is an issue. Due to this specific issue, most of these methods are not recommended for real-time or online inference. For instance, we could find only one approach [69] in this category which can be deployed online.
- Machine learning-based methods
- –
- The analytical model behind ML/DL approaches is complex, but ML/DL methods are usually treated as black box models, so if the method is end-to-end (provide data and get a segmentation mask), then these methods are easier to grasp from a holistic perspective.
- –
- These methods perform fairly well on in vivo datasets as well, especially when they are trained on raw calcium imaging stacks and not just on summary images.
- –
- If computational cost is not an issue, then these methods are recommended.
- –
- DL-based methods are always data hungry, so if annotated data availability is an issue, then these methods are not recommended. Some of the DL-based approaches are developed while keeping the online inference in mind such as [79,95] but most of them are data hungry and work well only when deployed offline.
7.2. Conclusions and Future Work
- Neuron segmentation would benefit greatly if more annotated datasets are made available apart from the Neurofinder benchmark.
- In their current form, the annotated datasets of Neurofinder have one two-dimensional mask for a calcium imaging video where only the location of every neuron is identified. It would greatly help if the datasets were annotated in temporal domain as well by adding information about when those neurons were active.
- Machine learning-based approaches can specifically benefit from synthetic data.
- Another interesting avenue to explore is the use of reinforcement learning. We know the firing patterns of neurons and we know they follow the dynamics of calcium indicators. This information can be used to to train reinforcement learning methods to identify neurons.
- Another interesting avenue to explore is generative adversarial networks to learn the calcium imaging distributions and then use the learned distribution for neuron segmentation.
- Since calcium imaging datasets are acquired by different devices and under different conditions, they might not be similar. Moreover, there are other methods as well which capture the same neural activity but in different form (functional magnetic resonance imaging, for example). Therefore, domain alignment and domain adaptation can also help.
Author Contributions
Funding
Conflicts of Interest
Appendix A. Research Methods
Appendix A.1. Independent Component Analysis
Appendix A.2. Non-Negative Matrix Factorization
Appendix A.3. Summary Images
Appendix A.3.1. Statistical Summary Images
Appendix A.3.2. Correlation Summary Images
References
- Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci. 2009, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Niedermeyer, E.; da Silva, F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Bailey, D.L.; Maisey, M.N.; Townsend, D.W.; Valk, P.E. Positron Emission Tomography; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2. [Google Scholar]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [Green Version]
- Huettel, S.A.; Song, A.W.; McCarthy, G. Functional Magnetic Resonance Imaging; Sinauer Associates: Sunderland, MA, USA, 2004; Volume 1. [Google Scholar]
- Stosiek, C.; Garaschuk, O.; Holthoff, K.; Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 2003, 100, 7319–7324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niell, C.M.; Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 2008, 28, 7520–7536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohki, K.; Chung, S.; Ch’ng, Y.H.; Kara, P.; Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005, 433, 597–603. [Google Scholar] [CrossRef]
- Yaksi, E.; Friedrich, R.W. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat. Methods 2006, 3, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Najafi, F.; Giovannucci, A.; Wang, S.S.; Medina, J.F. Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice. Elife 2014, 3, e03663. [Google Scholar] [CrossRef] [Green Version]
- Gordon, G.; Harville, M.; Woodfill, J.; Darrell, T. Background Estimation and Segmentation Based on Range and Color. U.S. Patent 6,661,918, 9 December 2003. [Google Scholar]
- Farin, D.; de With, P.H.; Effelsberg, W. Robust background estimation for complex video sequences. In Proceedings of the 2003 International Conference on Image Processing (Cat. No. 03CH37429), Barcelona, Spain, 14–17 September 2003; Volume 1, p. I-145. [Google Scholar]
- Ridder, C.; Munkelt, O.; Kirchner, H. Adaptive background estimation and foreground detection using kalman-filtering. In Proceedings of the International Conference on recent Advances in Mechatronics, Istanbul, Turkey, 14–16 August 1995; pp. 193–199. [Google Scholar]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2001, 13, 556–562. [Google Scholar]
- Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469. [Google Scholar]
- Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. Adv. Neural Inf. Process. Syst. 2008, 20, 1257–1264. [Google Scholar]
- Kim, J.; Choi, J.; Yi, J.; Turk, M. Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1977–1981. [Google Scholar] [PubMed] [Green Version]
- Lee, T.W.; Lewicki, M.S. Unsupervised image classification, segmentation, and enhancement using ICA mixture models. IEEE Trans. Image Process. 2002, 11, 270–279. [Google Scholar] [PubMed]
- Lu, X.; Wu, H.; Yuan, Y. Double constrained NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2746–2758. [Google Scholar] [CrossRef]
- Kayalibay, B.; Jensen, G.; van der Smagt, P. CNN-based segmentation of medical imaging data. arXiv 2017, arXiv:1701.03056. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Cantu, D.A.; Wang, B.; Gongwer, M.W.; He, C.X.; Goel, A.; Suresh, A.; Kourdougli, N.; Arroyo, E.D.; Zeiger, W.; Portera-Cailliau, C. EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data. Front. Neural Circuits 2020, 14, 25. [Google Scholar] [CrossRef]
- Romano, S.A.; Pérez-Schuster, V.; Jouary, A.; Boulanger-Weill, J.; Candeo, A.; Pietri, T.; Sumbre, G. An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics. PLoS Comput. Biol. 2017, 13, e1005526. [Google Scholar] [CrossRef]
- Denis, J.; Dard, R.F.; Quiroli, E.; Cossart, R.; Picardo, M.A. DeepCINAC: A deep-learning-based Python toolbox for inferring calcium imaging neuronal activity based on movie visualization. eNeuro 2020, 7. [Google Scholar] [CrossRef]
- Pnevmatikakis, E.A. Analysis pipelines for calcium imaging data. Curr. Opin. Neurobiol. 2019, 55, 15–21. [Google Scholar] [CrossRef]
- Stringer, C.; Pachitariu, M. Computational processing of neural recordings from calcium imaging data. Curr. Opin. Neurobiol. 2019, 55, 22–31. [Google Scholar] [CrossRef]
- Tegtmeier, J.; Brosch, M.; Janitzky, K.; Heinze, H.J.; Ohl, F.W.; Lippert, M.T. CAVE: An Open-Source Tool for Combined Analysis of Head-Mounted Calcium Imaging and Behavior in MATLAB. Front. Neurosci. 2018, 12, 958. [Google Scholar] [CrossRef]
- Dubbs, A.; Guevara, J.; Yuste, R. moco: Fast motion correction for calcium imaging. Front. Neuroinform. 2016, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitani, A.; Komiyama, T. Real-time processing of two-photon calcium imaging data including lateral motion artifact correction. Front. Neuroinform. 2018, 12, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Blair, H.T.; Cong, J. LANMC: LSTM-Assisted Non-Rigid Motion Correction on FPGA for Calcium Image Stabilization. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019; pp. 104–109. [Google Scholar]
- Pnevmatikakis, E.A.; Soudry, D.; Gao, Y.; Machado, T.A.; Merel, J.; Pfau, D.; Reardon, T.; Mu, Y.; Lacefield, C.; Yang, W.; et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 2016, 89, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelstein, J.T.; Watson, B.O.; Packer, A.M.; Yuste, R.; Jedynak, B.; Paninski, L. Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys. J. 2009, 97, 636–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelstein, J.T.; Packer, A.M.; Machado, T.A.; Sippy, T.; Babadi, B.; Yuste, R.; Paninski, L. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 2010, 104, 3691–3704. [Google Scholar] [CrossRef] [Green Version]
- Pnevmatikakis, E.A.; Merel, J.; Pakman, A.; Paninski, L. Bayesian spike inference from calcium imaging data. In Proceedings of the 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 3–6 November 2013; pp. 349–353. [Google Scholar]
- Theis, L.; Berens, P.; Froudarakis, E.; Reimer, J.; Rosón, M.R.; Baden, T.; Euler, T.; Tolias, A.S.; Bethge, M. Benchmarking spike rate inference in population calcium imaging. Neuron 2016, 90, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Speiser, A.; Yan, J.; Archer, E.W.; Buesing, L.; Turaga, S.C.; Macke, J.H. Fast amortized inference of neural activity from calcium imaging data with variational autoencoders. Adv. Neural Inf. Process. Syst. 2017, 30, 4024–4034. [Google Scholar]
- Pachitariu, M.; Stringer, C.; Harris, K.D. Robustness of spike deconvolution for neuronal calcium imaging. J. Neurosci. 2018, 38, 7976–7985. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Li, G.; Nie, J.; Tarokh, A.; Zhou, X.; Guo, L.; Malicki, J.; Xia, W.; Wong, S.T. An automated method for cell detection in zebrafish. Neuroinformatics 2008, 6, 5–21. [Google Scholar] [CrossRef]
- Kaifosh, P.; Zaremba, J.D.; Danielson, N.B.; Losonczy, A. SIMA: Python software for analysis of dynamic fluorescence imaging data. Front. Neuroinform. 2014, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.I.; Gritton, H.J.; Tseng, H.a.; Bucklin, M.E.; Yao, Z.; Han, X. An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging. Sci. Rep. 2016, 6, 20986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaen, Q.; Asín-Achá, R.; Chettih, S.N.; Minderer, M.; Harvey, C.; Hochbaum, D.S. HNCcorr: A novel combinatorial approach for cell identification in calcium-imaging movies. eNeuro 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Li, J.; Liang, S.; Li, R.; Li, X.; Shi, X.; Huang, C.; Zhang, J.; Pan, J.; Jia, H.; et al. NeuroSeg: Automated cell detection and segmentation for in vivo two-photon Ca2+ imaging data. Brain Struct. Funct. 2018, 223, 519–533. [Google Scholar] [CrossRef]
- Xu, H.; Lu, C.; Berendt, R.; Jha, N.; Mandal, M. Automatic nuclei detection based on generalized laplacian of gaussian filters. IEEE J. Biomed. Health Inform. 2016, 21, 826–837. [Google Scholar] [CrossRef]
- Xing, F.; Xie, Y.; Yang, L. An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med Imaging 2015, 35, 550–566. [Google Scholar] [CrossRef]
- Romano, S.A.; Pérez-Schuster, V.; Jouary, A.; Candeo, A.; Boulanger-Weill, J.; Sumbre, G. A computational toolbox and step-by-step tutorial for the analysis of neuronal population dynamics in calcium imaging data. bioRxiv 2017, 103879. [Google Scholar] [CrossRef] [Green Version]
- Tomek, J.; Novak, O.; Syka, J. Two-Photon Processor and SeNeCA: A freely available software package to process data from two-photon calcium imaging at speeds down to several milliseconds per frame. J. Neurophysiol. 2013, 110, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Meyer, F. Topographic distance and watershed lines. Signal Process. 1994, 38, 113–125. [Google Scholar] [CrossRef]
- Reynolds, S.; Abrahamsson, T.; Schuck, R.; Sjöström, P.J.; Schultz, S.R.; Dragotti, P.L. ABLE: An activity-based level set segmentation algorithm for two-photon calcium imaging data. eNeuro 2017, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellefsen, K.L.; Settle, B.; Parker, I.; Smith, I.F. An algorithm for automated detection, localization and measurement of local calcium signals from camera-based imaging. Cell Calcium 2014, 56, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prada, J.; Sasi, M.; Martin, C.; Jablonka, S.; Dandekar, T.; Blum, R. An open source tool for automatic spatiotemporal assessment of calcium transients and local ‘signal-close-to-noise’activity in calcium imaging data. PLoS Comput. Biol. 2018, 14, e1006054. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.P.; Tseng, H.a.; Hansen, K.R.; Wu, R.; Gritton, H.J.; Si, J.; Han, X. Automatic cell segmentation by adaptive thresholding (ACSAT) for large-scale calcium imaging datasets. eNeuro 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Mukamel, E.A.; Nimmerjahn, A.; Schnitzer, M.J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 2009, 63, 747–760. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.P.; Man, K.; Firestein, B.L.; Meaney, D.F. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging. J. Neurosci. Methods 2015, 243, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Majee, S.; Ye, D.H.; Buzzard, G.T.; Bouman, C.A. A Model Based Neuron Detection Approach using Sparse Location Priors. Electron. Imaging 2017, 2017, 10–17. [Google Scholar] [CrossRef]
- Lu, J.; Li, C.; Singh-Alvarado, J.; Zhou, Z.C.; Fröhlich, F.; Mooney, R.; Wang, F. MIN1PIPE: A miniscope 1-photon-based calcium imaging signal extraction pipeline. Cell Rep. 2018, 23, 3673–3684. [Google Scholar] [CrossRef]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef] [Green Version]
- neurofinder. Available online: http://neurofinder.codeneuro.org/ (accessed on 2 July 2022).
- Diego, F.; Reichinnek, S.; Both, M.; Hamprecht, F.A. Automated identification of neuronal activity from calcium imaging by sparse dictionary learning. In Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA, 7–11 April 2013; pp. 1058–1061. [Google Scholar]
- Blaschko, M.B. Branch and bound strategies for non-maximal suppression in object detection. In Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, St. Petersburg, Russia, 25–27 July 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 385–398. [Google Scholar]
- Pnevmatikakis, E.A.; Gao, Y.; Soudry, D.; Pfau, D.; Lacefield, C.; Poskanzer, K.; Bruno, R.; Yuste, R.; Paninski, L. A structured matrix factorization framework for large scale calcium imaging data analysis. arXiv 2014, arXiv:1409.2903. [Google Scholar]
- Maruyama, R.; Maeda, K.; Moroda, H.; Kato, I.; Inoue, M.; Miyakawa, H.; Aonishi, T. Detecting cells using non-negative matrix factorization on calcium imaging data. Neural Netw. 2014, 55, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, J.; Soudry, D.; Mu, Y.; Freeman, J.; Ahrens, M.; Paninski, L. Fast constrained non-negative matrix factorization for whole-brain calcium imaging data. In Proceedings of the NIPS Workshop on Statistical Methods for Understanding Neural Systems; 2015. Available online: https://www.semanticscholar.org/paper/Fast-Constrained-Non-negative-Matrix-Factorization-Friedrich-Soudry/e4ff845a4b996482f4ef491fff4581a59d949800 (accessed on 2 July 2022).
- Pachitariu, M.; Stringer, C.; Dipoppa, M.; Schröder, S.; Rossi, L.F.; Dalgleish, H.; Carandini, M.; Harris, K.D. Suite2p: Beyond 10,000 neurons with standard two-photon microscopy. bioRxiv 2017, 061507. [Google Scholar] [CrossRef]
- Andilla, F.D.; Hamprecht, F.A. Sparse space-time deconvolution for calcium image analysis. Adv. Neural Inf. Process. Syst. 2014, 27, 64–72. [Google Scholar]
- Giovannucci, A.; Friedrich, J.; Kaufman, M.; Churchland, A.; Chklovskii, D.; Paninski, L.; Pnevmatikakis, E.A. Onacid: Online analysis of calcium imaging data in real time. Adv. Neural Inf. Process. Syst. 2017, 30, 2381–2391. [Google Scholar]
- Inan, H.; Erdogdu, M.A.; Schnitzer, M. Robust estimation of neural signals in calcium imaging. Adv. Neural Inf. Process. Syst. 2017, 30, 2901–2910. [Google Scholar]
- Maronna, R.A. Robust M-estimators of multivariate location and scatter. Ann. Stat. 1976, 4, 51–67. [Google Scholar] [CrossRef]
- Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 492–518. [Google Scholar]
- Zhou, P.; Resendez, S.L.; Rodriguez-Romaguera, J.; Jimenez, J.C.; Neufeld, S.Q.; Giovannucci, A.; Friedrich, J.; Pnevmatikakis, E.A.; Stuber, G.D.; Hen, R.; et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. Elife 2018, 7, e28728. [Google Scholar] [CrossRef]
- Valmianski, I.; Shih, A.Y.; Driscoll, J.D.; Matthews, D.W.; Freund, Y.; Kleinfeld, D. Automatic identification of fluorescently labeled brain cells for rapid functional imaging. J. Neurophysiol. 2010, 104, 1803–1811. [Google Scholar] [CrossRef]
- Schapire, R.E.; Freund, Y.; Bartlett, P.; Lee, W.S.; Schapire, R.E. Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 1998, 26, 1651–1686. [Google Scholar]
- Wang, Y.; Su, F.; Wang, S.; Yang, C.; Tian, Y.; Yuan, P.; Liu, X.; Xiong, W.; Zhang, C. Efficient implementation of convolutional neural networks in the data processing of two-photon in vivo imaging. Bioinformatics 2019, 35, 3208–3210. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.R.; Roy, S.; Singh, O.I.; Sinam, T.; Singh, K. A new local adaptive thresholding technique in binarization. arXiv 2012, arXiv:1201.5227. [Google Scholar]
- Klibisz, A.; Rose, D.; Eicholtz, M.; Blundon, J.; Zakharenko, S. Fast, simple calcium imaging segmentation with fully convolutional networks. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg, Germany, 2017; pp. 285–293. [Google Scholar]
- Bao, Y.; Soltanian-Zadeh, S.; Farsiu, S.; Gong, Y. Segmentation of neurons from fluorescence calcium recordings beyond real time. Nat. Mach. Intell. 2021, 3, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Su, H.; Zhu, J.; Guan, J.S.; Zhang, B. Neuron segmentation based on CNN with semi-supervised regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 20–28. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ghahramani, Z.; Lafferty, J.D. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 912–919. [Google Scholar]
- Zhang, L.; Li, Y.; Nevatia, R. Global data association for multi-object tracking using network flows. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Apthorpe, N.; Riordan, A.; Aguilar, R.; Homann, J.; Gu, Y.; Tank, D.; Seung, H.S. Automatic neuron detection in calcium imaging data using convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29, 3270–3278. [Google Scholar]
- Noah Apthorpe, N.A. Cell Magic Wand. 2016. Available online: https://github.com/NoahApthorpe/CellMagicWand (accessed on 2 July 2022).
- Wen, C.; Miura, T.; Fujie, Y.; Teramoto, T.; Ishihara, T.; Kimura, K.D. Deep-learning-based flexible pipeline for segmenting and tracking cells in 3D image time series for whole brain imaging. bioRxiv 2018, 385567. [Google Scholar] [CrossRef] [Green Version]
- Petersen, A.; Simon, N.; Witten, D. Scalpel: Extracting neurons from calcium imaging data. Ann. Appl. Stat. 2018, 12, 2430. [Google Scholar] [CrossRef]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.; Franklin, J. The elements of statistical learning: Data mining, inference and prediction. Math. Intell. 2005, 27, 83–85. [Google Scholar]
- Soltanian-Zadeh, S.; Sahingur, K.; Blau, S.; Gong, Y.; Farsiu, S. Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 8554–8563. [Google Scholar] [CrossRef] [Green Version]
- Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.; Bandula, S.; Gurusamy, K.; Davidson, B.; Pereira, S.P.; Clarkson, M.J.; Barratt, D.C. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans. Med. Imaging 2018, 37, 1822–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Giovannucci, A.; Friedrich, J.; Gunn, P.; Kalfon, J.; Brown, B.L.; Koay, S.A.; Taxidis, J.; Najafi, F.; Gauthier, J.L.; Zhou, P.; et al. CaImAn an open source tool for scalable calcium imaging data analysis. Elife 2019, 8, e38173. [Google Scholar] [CrossRef]
- Kirschbaum, E.; Bailoni, A.; Hamprecht, F.A. DISCo: Deep Learning, Instance Segmentation, and Correlations for Cell Segmentation in Calcium Imaging. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Virtual, 4–8 October 2020; pp. 151–162. [Google Scholar]
- Sità, L.; Brondi, M.; Lagomarsino de Leon Roig, P.; Curreli, S.; Panniello, M.; Vecchia, D.; Fellin, T. A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging. Nat. Commun. 2022, 13, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Pachitariu, M.; Packer, A.M.; Pettit, N.; Dalgleish, H.; Hausser, M.; Sahani, M. Extracting regions of interest from biological images with convolutional sparse block coding. Adv. Neural Inf. Process. Syst. 2013, 26, 1745–1753. [Google Scholar]
- Pachitariu, M.; Stringer, C.; Schröder, S.; Dipoppa, M.; Rossi, L.F.; Carandini, M.; Harris, K.D. Sourcery, Suite2p for Neurofinder. 2016. Available online: https://github.com/codeneuro/neurofinder (accessed on 2 July 2022).
- Gao, S. A CNN Based Neurons Detection Approach. 2016. Available online: https://bit.ly/33EVzTc (accessed on 2 July 2022).
- Kirschbaum, E. Novel Machine Learning Approaches for Neurophysiological Data Analysis. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany, 2019. [Google Scholar]
Type | Code Availability | Performance | DB | Complexity |
---|---|---|---|---|
Guan et al. [44] Signal and image processing-based | MATLAB code available at https://bit.ly/2GItq4O | Precision = 87.5%, Recall = 89.3%, F1 = 88.1% | MC | - |
Shen et al. [53] Signal and image processing-based | MATLAB code available at https://bit.ly/328n2Lx | Precision = 71.2%, Recall = 74.9%, F1 = 72.3% | MC | - |
Spaen et al. [43] Signal and image processing-based | Python code available at https://bit.ly/36qtJw3 | Precision = 65.8%, Recall = 62%, F1 = 59.6% | NF | O(WHD) + O((WH)2) |
Reynolds et al. [50] Signal and image processing-based | MATLAB code available at https://bit.ly/3lb776R | F1 = 67.5% | NF | where K is the dimension of the levelset |
Giovannucci et al. [69] Matrix factorization | Python code available at https://bit.ly/2SzbJHw | Precision = 87%, Recall = 72%, F1 = 79% | MC | RT |
Mukamel et al. [56] Independent component analysis-based | MATLAB code available at https://bit.ly/36PuoaB | F1 = 75% | MC | |
Pachitariu et al. [97] Matrix factorization-based | Python code available at https://bit.ly/3g55vvT | Precision = 57.8%, Recall = 56.8%, F1 = 55% | NF | - |
Pachitariu et al. [98] Matrix factorization-based | Python code available at https://bit.ly/3dSPmai | Precision = 59.9%, Recall = 62.9%, F1 = 58.3% | NF | - |
Apthorpe et al. [84] Machine learning-based | Python code available at https://bit.ly/30Ky49C | F1 = 71% | MC | O(4K+2F) |
Wang et al. [76] Machine learning-based | MATLAB code available at https://bit.ly/3iEJEcA | F1 = 85% | MC | - |
Spaen et al. [43]+Gao et al. [99] Machine learning + signal processing-based | Python code available at https://bit.ly/33EVzTc + https://bit.ly/36qtJw3 | Precision = 70.2%, Recall = 60.2%, F1 = 61.7% | NF | O(6K+F) |
Klibisz et al. [78] Machine learning-based | Python code available at https://bit.ly/3d60HTG | Precision = 70.2%, Recall = 60.2%, F1 = 56.9% | NF | O(9K) U-Net 2Ds |
Ronneberger et al. [21] Machine learning-based | Python code available at https://bit.ly/36pvvNL | F1 = 69% | NF | O(9K) U-Net |
Kirschbaum et al. [100] + [94] Machine learning-based | Python code available at https://bit.ly/30G96YU | F1 = 67% | NF | O(3K+F) CNN +O(5F) U-Net |
Soltanian-Zadeh et al. [90] Machine learning-based | Python & MATLAB code available at https://bit.ly/36seu5Q | F1 = 67.5% | NF | O(6K+F) |
Bao et al. [79] Machine learning-based | Python & Python code available at https://bit.ly/3wEjsaU | F1 = 85% | NF | - |
Sita et al. [95] Machine learning-based | Python & Python code available at https://bit.ly/3sOuE3I | F1 = 85% | MC | - |
Category | Strengths | Weaknesses |
---|---|---|
Signal/Image processing-based methods |
|
|
Matrix decomposition-based methods |
|
|
ML-based methods |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, W.; Masip, D. Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey. Appl. Sci. 2022, 12, 6876. https://doi.org/10.3390/app12146876
Abbas W, Masip D. Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey. Applied Sciences. 2022; 12(14):6876. https://doi.org/10.3390/app12146876
Chicago/Turabian StyleAbbas, Waseem, and David Masip. 2022. "Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey" Applied Sciences 12, no. 14: 6876. https://doi.org/10.3390/app12146876
APA StyleAbbas, W., & Masip, D. (2022). Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey. Applied Sciences, 12(14), 6876. https://doi.org/10.3390/app12146876