2D CFD Simulation of Dynamic Heat Transfer in an Open-Type Refrigerated Display Cabinet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Mathematical Model
- The thermal properties of the fluid in the air-on section (Figure 3) are in a steady-state.
- Mass transfer from load to air (weight loss) is not considered.
- The moisture transfer process is not considered.
- The evaporator and fans change the air-on stream.
2.3. Numerical Procedure
2.4. Boundary Conditions
2.5. Experimental Technique
3. 2D Numerical Simulation Results and Discussion
3.1. Simulation of Air Curtain Formation Time and Its Shape
3.2. Simulation of the Temperature Distribution in the Display Cabinet
3.3. Comparison of the Intake and Outtake Air Temperature and Infiltration Ratio
3.4. Comparison of the M-Packets Temperatures in the Middle Plane of the Cabinet
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Tsamos, K.M.; Tassou, S.A. CFD comparisons of open-type refrigerated display cabinets with/without air guiding strips. Energy Procedia 2017, 123, 54–61. [Google Scholar] [CrossRef]
- BSI EN ISO 23953-2:2015; Refrigerated Display Cabinets—Part 2: Classification, Requirements and Test Conditions. The International Organization for Standardization: Geneva, Switzerland, 2015.
- Fricke, B.; Becker, B. Energy Use of Doored and Open Vertical Refrigerated Display Cases. Proceedings of 13th International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, IA, USA, 12–15 July 2010. [Google Scholar]
- Faramarzi, R. Efficient display case refrigeration. ASHRAE J. 1999, 41, 46–54. [Google Scholar]
- Chaomuang, N.; Flick, D.; Denis, A.; Laguerre, O. Experimental analysis of heat transfer and airflow in a closed refrigerated display cabinet. J. Food Eng. 2019, 244, 101–114. [Google Scholar] [CrossRef]
- Chaomuang, N.; Flick, D.; Denis, A.; Laguerre, O. Experimental and numerical characterization of airflow in a closed refrigerated display cabinet using PIV and CFD techniques. Int. J. Refrig. 2020, 111, 168–177. [Google Scholar] [CrossRef]
- Chaomuang, N.; Laguerre, O.; Flick, D. Dynamic heat transfer modeling of a closed refrigerated display cabinet. Appl. Therm. Eng. 2019, 161, 114138. [Google Scholar] [CrossRef]
- Tsamos, K.M.; Mroue, H.; Sun, J.; Tassou, S.A.; Nicholls, N.; Smith, G. Energy savings potential in using cold-shelves innovation for multi-deck open front refrigerated cabinets. Energy Procedia 2019, 161, 292–299. [Google Scholar] [CrossRef]
- Ben-Abdallah, R.; Leducq, D.; Hoang, H.M.; Pateau, O.; Ballot-Miguet, B.; Delahaye, A.; Fournaison, L. Modeling and experimental investigation for load temperature prediction at transient conditions of open refrigerated display cabinet using Modelica environment. Int. J. Refrig. 2018, 94, 102–110. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Lian, G. A CFD simulation of 3D air flow and temperature variation in refrigeration cabinet. Procedia Eng. 2015, 102, 1599–1611. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Sun, J.; Tassou, S.A. Numerical investigation of the protective mechanisms of air curtain in a refrigerated truck during door openings. Energy Procedia 2019, 161, 216–223. [Google Scholar] [CrossRef]
- Nikitin, M.N. Numerical analysis of refrigerated display designs in terms of cooling efficiency. Int. J. Therm. Sci. 2020, 148, 106157. [Google Scholar] [CrossRef]
- Laguerre, O.; Hoang, M.H.; Flick, D. Heat transfer modelling in a refrigerated display cabinet: The influence of operating conditions. J. Food Eng. 2012, 108, 353–364. [Google Scholar] [CrossRef]
- Laguerre, O.; Hoang, M.H.; Osswald, V.; Flick, D. Experimental study of heat transfer and air flow in a refrigerated display cabinet. J. Food Eng. 2012, 113, 310–321. [Google Scholar] [CrossRef]
- Ben-Abdallah, R.; Leducq, D.; Hoang, H.M.; Fournaison, L.; Pateau, O.; Ballot-Miguet, B.; Delahaye, A. Experimental investigation of the use of PCM in an open display cabinet for energy management purposes. Energy Convers. Manag. 2019, 198, 111909. [Google Scholar] [CrossRef]
Parameter | Unmodified Version | Modified Version |
---|---|---|
Length without end walls, mm | 2500 | 2500 |
Volume, m3 | 1.8 | 1.8 |
Exposition space, m2 | 6 | 5.375 |
Honeycomb angle, ° | 40 | 55 |
Shelf L1, mm | 600 | 600 |
Shelf L2, mm | 500 | 450 |
Shelf L3, mm | 500 | 450 |
Shelf L4, mm | 450 | 400 |
Shelf L5, mm | 350 | 250 |
Dimensions of test product package, mm | 100 × 100 × 50 | 100 × 100 × 50 |
Dimensions of DAG (width × height × depth), mm | 2500 × 120 × 20 | 2500 × 120 × 20 |
Dimensions of RAG (length × width), mm | 2500 × 70 | 2500 × 70 |
Number of propeller fans | 4 | 4 |
Propeller fan rpm and flowrate, m3/h (back flow pressure 12 Pa) | 1300; 400 | 1300; 400 |
Connection type | Hydroloop | Hydroloop |
Mesh | Elements | Triangles | Quads | Edges | Vertex |
---|---|---|---|---|---|
M1 | 6605 | 6605 | 0 | 966 | 265 |
M2 | 10,726 | 7908 | 2818 | 1059 | 265 |
M3 | 13,973 | 10,363 | 3610 | 1253 | 265 |
M4 | 17,986 | 13,506 | 4480 | 1470 | 265 |
Temperature, K | Velocity, m/s | Pressure | |
---|---|---|---|
Air-on | 272.15 | 0.252 | |
Air-off | 0.95 | ||
Open boundary | 298.15 | 0 | |
Model | 283.15 |
Location (Figure 13) | Temperature Obtained in Numerical Study, °C | Average Measured Temperature, °C | Difference, % |
---|---|---|---|
F1 | 0.86 | 0.91 | +5.81 |
F2 | 2.57 | 2.33 | −9.33 |
F5 | 3.55 | 3.74 | +5.35 |
F6 | 3.62 | 3.78 | +4.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vengalis, T.; Mokšin, V. 2D CFD Simulation of Dynamic Heat Transfer in an Open-Type Refrigerated Display Cabinet. Appl. Sci. 2022, 12, 6916. https://doi.org/10.3390/app12146916
Vengalis T, Mokšin V. 2D CFD Simulation of Dynamic Heat Transfer in an Open-Type Refrigerated Display Cabinet. Applied Sciences. 2022; 12(14):6916. https://doi.org/10.3390/app12146916
Chicago/Turabian StyleVengalis, Tadas, and Vadim Mokšin. 2022. "2D CFD Simulation of Dynamic Heat Transfer in an Open-Type Refrigerated Display Cabinet" Applied Sciences 12, no. 14: 6916. https://doi.org/10.3390/app12146916
APA StyleVengalis, T., & Mokšin, V. (2022). 2D CFD Simulation of Dynamic Heat Transfer in an Open-Type Refrigerated Display Cabinet. Applied Sciences, 12(14), 6916. https://doi.org/10.3390/app12146916