A Computational Model for Nonlinear Biomechanics Problems of FGA Biological Soft Tissues
Abstract
:1. Introduction
2. Formulation of the Problem
3. Hybrid Technique Implementation
3.1. LRBFCM—GBEM Implementation for the Temperature Field
3.1.1. LRBFCM Implementation for the Time-Fractional-Order Bioheat Equation without Dual-Phase Lag
3.1.2. GBEM Implementation for the Dual-Phase-Lag Bioheat Equation without a Fractional-Order Derivative
3.2. BEM Implementation for a Poroelastic Displacement Field
4. Numerical Results and Discussion
5. Conclusions
- A new HBEM model was used to describe the nonlinear fractional biomechanical interactions in FGA biological tissues.
- The bioheat governing equation was solved by implementing the LRBFCM and GBEM for obtaining the temperature, and then the poroelastic governing equation was solved using the BEM to calculate the displacement at each time step.
- An efficient partitioned semi-implicit coupling algorithm was implemented with the GMSS to solve equations arising from the boundary element discretization.
- The numerical findings were depicted graphically to display the influences of the graded parameter, fractional parameter, and anisotropic property on the bio-thermal stress.
- The numerical findings also show the differences between the Fourier, single-phase-lag, and dual-phase-lag bioheat models, and verified the validity, accuracy, and effectiveness of the developed HBEM.
- The main advantages of the current HBEM model are its generality and simplicity.
- The numerical findings supported the claim that the proposed method offers more advantages than other domain discretization techniques.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van, H.J.; Gybels, J. C nociceptor activity in human nerve during painful and non painful skin stimulation. J. Neurol. Neurosurg. Psychiatry 1981, 44, 600–607. [Google Scholar]
- Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef] [PubMed]
- Wulff, W. The Energy Conservation Equation for Living Tissue. IEEE Trans. Biomed. Eng. 1974, 21, 494–495. [Google Scholar] [CrossRef]
- Chen, M.M.; Holmes, K.R. Microvascular Contributions in Tissue Heat Transfer. Ann. N. Y. Acad. Sci. 1980, 335, 137–150. [Google Scholar] [CrossRef]
- Jiji, L.M.; Weinbaum, S.; Lemons, D.E. Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part II: Model Formulation and Solution. J. Biomech. Eng. 1984, 106, 331–341. [Google Scholar] [CrossRef]
- Weinbaum, S.; Jiji, L.M. A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature. J. Biomech. Eng. 1985, 107, 131–139. [Google Scholar] [CrossRef]
- Weinbaum, S.; Xu, L.X.; Zhu, L.; Ekpene, A. A New Fundamental Bioheat Equation for Muscle Tissue: Part I—Blood Perfusion Term. J. Biomech. Eng. 1997, 119, 278–288. [Google Scholar] [CrossRef]
- Arkin, H.; Xu, L.X.; Holmes, K.R. Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans. Biomed. Eng. 1994, 41, 97–107. [Google Scholar] [CrossRef]
- Cattaneo, C. Sur une forme de i’equation de la chaleur elinant le paradox d’une propagation instantance. C. R. L’acad. Sci. 1958, 247, 431–433. [Google Scholar]
- Vernotee, M.P. Les paradoxes de la theorie continue de i equation de la chleur. C. R. L’acad. Sci. 1958, 246, 3154–3155. [Google Scholar]
- Tzou, D.Y. A unified field approach for heat conduction from micro to macroscale. J. Heat Transf. 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Tzou, D.Y. Macro- to Microscale Heat Transfer: The Lagging Behavior; Taylor & Francis: Washington, DC, USA, 1996. [Google Scholar]
- Ma, J.; Yang, X.; Liu, S.; Sun, Y.; Yang, J. Exact solution of thermal response in a three-dimensional living bio-tissue subjected to a scanning laser beam. Int. J. Heat Mass Transf. 2018, 124, 1107–1116. [Google Scholar] [CrossRef]
- Kabiri, A.; Talaee, M.R. Thermal field and tissue damage analysis of moving laser in cancer thermal therapy. Lasers Med. Sci. 2021, 36, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Xue, Z.; Tian, X. Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with variable thermal material properties. Int. J. Therm. Sci. 2018, 124, 459–466. [Google Scholar] [CrossRef]
- Fahmy, M.A. A new LRBFCM-GBEM modeling algorithm for general solution of time fractional-order dual phase lag bioheat transfer problems in functionally graded tissues. Numer. Heat Transf. Part A Appl. 2019, 75, 616–626. [Google Scholar] [CrossRef]
- Fahmy, M.A. Boundary element modeling and simulation algorithm for fractional biothermomechanical problems of Ani-sotropic Soft Tissues. In Boundary Element Method; IntechOpen: London, UK, 2021. [Google Scholar]
- Fahmy, M.A. Boundary Element Algorithm for Modeling and Simulation of Dual Phase Lag Bioheat Transfer and Biome-chanics of Anisotropic Soft Tissues. Int. J. Appl. Mech. 2018, 10, 1850108. [Google Scholar] [CrossRef]
- Fahmy, M.A. Boundary element modeling and simulation of biothermomechanical behavior in anisotropic laser-induced tissue hyperthermia. Eng. Anal. Bound. Elem. 2019, 101, 156–164. [Google Scholar] [CrossRef]
- Federico, S.; Herzog, W. Towards an analytical model of soft biological tissues. J. Biomech. 2008, 41, 3309–3313. [Google Scholar] [CrossRef]
- Ruy, M.; Gonçalves, R.; Vicente, W. Effect of Dimensional Variables on the Behavior of Trees for Biomechanical Studies. Appl. Sci. 2022, 12, 3815. [Google Scholar] [CrossRef]
- Pioletti, D.; Rakotomanana, L.R. Non-linear viscoelastic laws for soft biological tissues. Eur. J. Mech. A/Solids 2000, 19, 749–759. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liang, L.; Sun, W. A generic physics-informed neural network-based constitutive model for soft biological tissues. Comput. Methods Appl. Mech. Eng. 2020, 372, 113402. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Gasser, T.C. A microstructurally motivated constitutive description of collagenous soft biological tissue towards the description of their non-linear and time-dependent properties. J. Mech. Phys. Solids 2021, 154, 104500. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 1956, 28, 168–178. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Krahulec, S.; Sladek, J.; Sladek, V.; Hon, Y.-C. Meshless analyses for time-fractional heat diffusion in functionally graded materials. Eng. Anal. Bound. Elem. 2016, 62, 57–64. [Google Scholar] [CrossRef]
- Majchrzak, E.; Turchan, L. Solution of dual phase lag equation by means of the boundary element method using discretization in time. J. Appl. Math. Comput. Mech. 2013, 12, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, M.A. A new boundary element algorithm for modeling and simulation of nonlinear thermal stresses in micropolar FGA composites with temperature-dependent properties. Adv. Model. Simul. Eng. Sci. 2021, 8, 89–95. [Google Scholar] [CrossRef]
- Breuer, M.; De Nayer, G.; Münsch, M.; Gallinger, T.; Wüchner, R. Fluid–structure interaction using a partitioned semi–implicit predictor–corrector coupling scheme for the application of large–eddy simulation. J. Fluids Struct. 2012, 29, 107–130. [Google Scholar] [CrossRef] [Green Version]
- Hoemmen, M. Communication-Avoiding Krylov Subspace Methods. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2010. [Google Scholar]
- Fahmy, M.A. A new boundary element strategy for modeling and simulation of three-temperature nonlinear generalized micropolar-magneto-thermoelastic wave propagation problems in FGA structures. Eng. Anal. Bound. Elem. 2019, 108, 192–200. [Google Scholar] [CrossRef]
- Fahmy, M.A. A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation. Case Stud. Therm. Eng. 2021, 25, 100918. [Google Scholar] [CrossRef]
- Badahmane, A. Regularized preconditioned GMRES and the regularized iteration method. Appl. Numer. Math. 2020, 152, 159–168. [Google Scholar] [CrossRef]
- Fahmy, M.A. A Novel BEM for Modeling and Simulation of 3T Nonlinear Generalized Anisotropic Micropolar-Thermoelasticity Theory withMemory Dependent Derivative. Comput. Model. Eng. Sci. 2021, 126, 175–199. [Google Scholar] [CrossRef]
- Huang, Z.-G.; Wang, L.-G.; Xu, Z.; Cui, J.-J. The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems. Appl. Math. Comput. 2017, 299, 95–118. [Google Scholar] [CrossRef]
- Fahmy, M.A. A New BEM for Fractional Nonlinear Generalized Porothermoelastic Wave Propagation Problems. Comput. Mater. Contin. 2021, 68, 59–76. [Google Scholar] [CrossRef]
- Gilchrist, M.D.; Murphy, J.G.; Parnell, W.; Pierrat, B. Modelling the slight compressibility of anisotropic soft tissue. Int. J. Solids Struct. 2014, 51, 3857–3865. [Google Scholar] [CrossRef]
- Morrow, D.A.; Donahue, T.L.H.; Odegard, G.M.; Kaufman, K.R. Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 2010, 3, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Seffen, K.; Lu, T.J. Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 2008, 51, 2237–2259. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Iwamoto, M. Finite element analysis of biological soft tissue surrounded by a deformable membrane that controls transmembrane flow. Theor. Biol. Med. Model. 2018, 15, 21. [Google Scholar] [CrossRef]
Discretization Level | Preconditioning Level | CA-Arnoldi [31,32,33] | Regularized [34,35] | GMSS [36,37] | |||
---|---|---|---|---|---|---|---|
Process Time | Number of Iterations | Process Time | Number of Iterations | Process Time | Number of Iterations | ||
1 (32) | 0 | 0.07 | 6 | 0.07 | 6 | 0.07 | 6 |
2 (56) | 0 | 0.2 | 10 | 0.2 | 10 | 0.2 | 10 |
1 | 0.16 | 8 | 0.16 | 8 | 0.16 | 8 | |
3 (104) | 0 | 0.5 | 13 | 0.64 | 14 | 0.4 | 12 |
1 | 0.46 | 10 | 0.6 | 11 | 0.32 | 7 | |
2 | 0.4 | 7 | 0.56 | 9 | 0.28 | 5 | |
4 (200) | 0 | 2.48 | 14 | 2.84 | 18 | 1.64 | 14 |
1 | 2.04 | 12 | 2.62 | 16 | 1.48 | 9 | |
2 | 1.68 | 8 | 1.96 | 11 | 1.24 | 7 | |
3 | 1.46 | 7 | 51.82 | 4 | 0.98 | 3 | |
5 (392) | 0 | 12.2 | 22 | 14.26 | 28 | 6.85 | 16 |
1 | 10.06 | 20 | 12.36 | 26 | 5.79 | 14 | |
2 | 9.38 | 18 | 10.4 | 22 | 4.98 | 12 | |
3 | 8.28 | 14 | 9.48 | 16 | 4.04 | 10 | |
4 | 7.62 | 10 | 8.1 | 14 | 3.64 | 4 | |
6 (776) | 0 | 40.8 | 20 | 46.4 | 26 | 36.5 | 15 |
1 | 38.5 | 18 | 42.2 | 24 | 32.4 | 13 | |
2 | 36.6 | 16 | 40.3 | 22 | 30.8 | 11 | |
3 | 32.5 | 14 | 36.8 | 16 | 26.2 | 9 | |
4 | 30.4 | 12 | 34.3 | 14 | 20.3 | 5 | |
5 | 28.2 | 8 | 32.9 | 12 | 18.2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, M.A. A Computational Model for Nonlinear Biomechanics Problems of FGA Biological Soft Tissues. Appl. Sci. 2022, 12, 7174. https://doi.org/10.3390/app12147174
Fahmy MA. A Computational Model for Nonlinear Biomechanics Problems of FGA Biological Soft Tissues. Applied Sciences. 2022; 12(14):7174. https://doi.org/10.3390/app12147174
Chicago/Turabian StyleFahmy, Mohamed Abdelsabour. 2022. "A Computational Model for Nonlinear Biomechanics Problems of FGA Biological Soft Tissues" Applied Sciences 12, no. 14: 7174. https://doi.org/10.3390/app12147174
APA StyleFahmy, M. A. (2022). A Computational Model for Nonlinear Biomechanics Problems of FGA Biological Soft Tissues. Applied Sciences, 12(14), 7174. https://doi.org/10.3390/app12147174