Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation Conditions
2.2. Light Treatments
2.3. Morphological Parameters
2.4. Determination of the Pigment Composition
2.5. The Total Content and Essential Oil Composition
2.6. Data Analysis
3. Results
3.1. Morphological Parameters
3.2. Photosynthetic Pigment Content
3.3. Essential Oil Components
4. Discussion
4.1. Effect of UV Radiation on Plant Morphology and Pigment Content
4.2. UV Radiation Stimulates the Biosynthesis of Anthocyanins
4.3. UV Radiation Changes the Composition of Essential Oil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veloso, R.A.; Castro, H.G.; Barbosa, L.C.A.; Cardoso, D.P.; Chagas Júnior, A.F.; Scheidt, G.N. Essential oil composition and content of different accessions and cultivars of basil (Ocimum basilicum L.). Rev. Bras. Plantas Med. 2014, 16, 364–371. [Google Scholar] [CrossRef]
- Anwar, F.; Alkharfy, K.M.; Mehmood, T.; Bakht, M.A.; Najeeb-ur-Rehman. Variation in Chemical Composition and Effective Antibacterial Potential of Ocimum basilicum L. Essential Oil Harvested from Different Regions of Saudi Arabia. Pharm. Chem. J. 2021, 55, 187–193. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Çilesiz, Y.; Korkmaz, E.; Mustafa, Z.; Baloch, F.S.; Karaköy, T.; Aasim, M. An Overview of O. basilicum (L.) in Turkey. In Ocimum basilicum: Taxonomy, Cultivation and Uses; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021; pp. 51–71. [Google Scholar]
- Amaki, W.; Yamazaki, N.; Ichimura, M.; Watanabe, H. Effects of light quality on the growth and essential oil content in sweet basil. Acta Hortic. 2011, 907, 91–94. [Google Scholar] [CrossRef]
- Chang, X.M.; Alderson, P.G.; Wright, C.J. Effect of temperature integration on the growth and volatile. oil content of basil (Ocimum basilicum L.). J. Hortic. Sci. Biotechnol. 2005, 80, 593–598. [Google Scholar] [CrossRef]
- Lachowicz, K.J.; Jones, G.P.; Briggs, D.R.; Bienvenu, F.E.; Palmer, M.V.; Mishra, V.; Hunter, M.M. Characteristics of Plants and Plant Extracts from Five Varieties of Basil (Ocimum basilicum L.) Grown in Australia. J. Agric. Food Chem. 1997, 45, 2660–2665. [Google Scholar] [CrossRef]
- Morales, M.R.; Simon, J.E.; Charles, D.J. Comparison of essential oil content and composition between field and greenhouse grown genotypes of methyl cinnamate basil (Ocimum basilicum L.). J. Herbs Spices Med. Plants 1993, 1, 25–30. [Google Scholar] [CrossRef]
- Aurore, G.S.; Abaul, J.; Bourgeois, P. Antibacterial and antifungal activities of the essential oils of Pimenta racemosa var. racemosa P. Miller (Myrtaceae). J. Essent. Oil Res. 1998, 10, 161–164. [Google Scholar] [CrossRef]
- Kim, D.H.; Ahn, Y.J. Contact and fumigant activities of constituents of Foeniculum vulgare fruit against three coleopteran stored-product insects. Pest Manag. Sci. 2001, 57, 301–306. [Google Scholar] [CrossRef]
- Nishimura, T.; Zobayed, S.M.A.; Kozai, T.; Goto, E. Medicinally Important Secondary Metabolites and Growth of Hypericum perforatum L. Plants as Affected by Light Quality and Intensity. Environ. Control Biol. 2007, 45, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Ebisawa, M.; Shoji, K.; Kato, M.; Shimomura, K.; Goto, F.; Yoshihara, T. Effects of supplementary lighting of UV-B, UV-A and blue light during the night on growth and coloring in red-leaf lettuce. J. Shita 2008, 20, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Milenkovic, L.; Stanojevic, J.; Cvetkovic, D.; Stanojevic, L.; Lalevic, D.; Sunic, L.; Fallik, E.; Ilic, Z.S. New technology in basil production with high essential oil yield and quality. Ind. Crops Prod. 2019, 140, 111718. [Google Scholar] [CrossRef]
- Carvalho, S.D.; Schwieterman, M.L.; Abrahan, C.E.; Colquhoun, T.A.; Folta, K.M. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum). Front. Plant Sci. 2016, 7, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Effects of Light Quality on Growth and Phytonutrient Accumulation of Herbs under Controlled Environments. Horticulturae 2017, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Gerda, M.; Wilfried, H. Effect of PAR and UV-B Radiation on the Quality and Quantity of the Essential Oil in Sweet basil (Ocimum basilicum L.). Acta Hortic. 2004, 659, 375–382. [Google Scholar] [CrossRef]
- Il’chenko, G.N.; Ageeva, T.T.; Berezkin, N.G. Influence of different illumination levels on growth and development of basil eugenol (Ocimum gratissimum L.). Oilseed Crops 2014, 2, 159–160. [Google Scholar]
- Bliznikas, Z.; Zukauskas, A.; Samuoliene, G.; Virsile, A.; Brazaityte, A.; Jankauskiene, J.; Duchovskis, P.; Novickovas, A. Effect of Supplementary Pre-Harvest LED Lighting on the Antioxidant and Nutritional Properties of Green Vegetables. Acta Hortic. 2012, 939, 85–91. [Google Scholar] [CrossRef]
- Sabzalian, M.R.; Heydarizadeh, P.; Zahedi, M.; Boroomand, A.; Agharokh, M.; Sahba, M.R.; Schoefs, B. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agron. Sustain. Dev. 2014, 34, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, N.; Nishimura, T.; Ohyama, K.; Sumino, M.; Malayeri, S.; Goto, E.; Inagaki, N.; Morota, T. Light Quality Affected Growth and Contents of Essential Oil Components of Japanese Mint Plants. Acta Hortic. 2008, 797, 431–436. [Google Scholar] [CrossRef]
- Afreen, F.; Zobayed, S.; Kozai, T. Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiol. Biochem. 2005, 43, 1074–1081. [Google Scholar] [CrossRef]
- Goto, E. Plant production in a closed plant factory with artificial lighting. Acta Hortic. 2021, 956, 37–49. [Google Scholar] [CrossRef]
- Hikosaka, S.; Ito, K.; Goto, E. Effects of ultraviolet light on growth, essential oil concentration, and total antioxidant capacity of japanese mint. Environ. Control Biol. 2010, 48, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Hikosaka, S.; Goto, E.; Sawada, H.; Saito, T.; Kudo, T.; Ohno, T.; Shibata, T.; Yoshimatsu, K. In Effects of UV irradiation on plant growth and concentrations of four medicinal ingredients in Chinese licorice (Glycyrrhiza uralensis). Acta Hortic. 2012, 956, 643–648. [Google Scholar] [CrossRef]
- Johnson, C.B.; Kirby, J.; Naxakis, G.; Pearson, S. Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry 1999, 51, 507–510. [Google Scholar] [CrossRef]
- Noguchi, A.; Amaki, W. Effects of light quality on the growth and essential oil production in Mexican mint. Acta Hortic. 2016, 1134, 239–244. [Google Scholar] [CrossRef]
- Folta, K.; Carvalho, S. Photoreceptors and control of horticultural plant traits. HortScience 2015, 50, 1274–1280. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G. The UV-B Photoreceptor UVR8: From Structure to Physiology. Plant Cell 2014, 26, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Neugart, S.; Schreiner, M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 2018, 234, 370–381. [Google Scholar] [CrossRef]
- Klein, R.M. Plants and near-ultraviolet radiation. Bot. Rev. 1978, 44, 1–127. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Robberecht, R.; Billings, W.D. A Steep Latitudinal Gradient of Solar Ultraviolet-B Radiation in the Arctic-Alpine Life Zone. Ecology 1980, 61, 600–611. [Google Scholar] [CrossRef]
- Ioannidis, D.; Bonner, L.; Johnson, C.B. UV-B is required for normal development of oil glands in Ocimum basilicum L. (sweet basil). Ann. Bot. 2002, 90, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Mosadegh, H.; Trivellini, A.; Lucchesini, M.; Ferrante, A.; Maggini, R.; Vernieri, P.; Sodi, A.M. UV-B Physiological Changes Under Conditions of Distress and Eustress in Sweet Basil. Plants 2019, 8, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosadegh, H.; Trivellini, A.; Ferrante, A.; Lucchesini, M.; Vernieri, P.; Mensuali, A. Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. Sci. Hortic. 2018, 229, 107–116. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M. Pre-Harvest UV-B Radiation and Photosynthetic Photon Flux Density Interactively Affect Plant Photosynthesis, Growth, and Secondary Metabolites Accumulation in Basil (Ocimum basilicum) Plants. Agronomy 2018, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Grishin, A.A.; Smirnov, A.A.; Grishin, V.A.; Dorokhov, A.A.; Chilingaryan, N.O. Climatic chambers with a system of controlled phytoirradiation for growing plants. Bull. Cent. Bot. Gard. 2011, 1, 56–60. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortic. 2016, 198, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Maslennikov, P.; Chupakhina, G.; Skrypnick, L.; Fedurayev, P.; Poltavskaya, R. Content of anthocyanin and carotenoid pigments in medicinal plants. Bull. Mosc. Reg. State Univ. 2013, 1, 6. [Google Scholar]
- Solar and Meteorological Data Sets from NASA Research for Support of Renewable Energy, Building Energy Efficiency and Agricultural Needs. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 1 September 2021).
- Musiienko, M.; Parshykova, T.; Slavnyj, P. Spectrographic Methods in Practical Physiology, Biochemistry and Ecology of Plants; Fitosociocentr: Kyiv, Ukraine, 2001; p. 200. (In Ukrainian) [Google Scholar]
- Holm, G. Chlorophyll mutations in barley. Acta Agric. Scand. 1954, 4, 457–471. [Google Scholar] [CrossRef]
- Wettstein, D. Chlorophyll letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res. 1957, 12, 427–434. [Google Scholar] [CrossRef]
- Fischer, R.; Nitzan, N.; Chaimovitsh, D.; Rubin, B.; Dudai, N. Variation in Essential Oil Composition within Individual Leaves of Sweet Basil (Ocimum basilicum L.) Is More Affected by Leaf Position than by Leaf Age. J. Agric. Food Chem. 2011, 59, 4913–4922. [Google Scholar] [CrossRef]
- Sakalauskaite, J.; Viskelis, P.; Duchovskis, P.; Dambrauskiene, E.; Sakalauskiene, S.; Samuoliene, G.; Brazaityte, A. Supplementary UV-B irradiation effects on basil (Ocimum basilicum L.) growth and phytochemical properties. J. Food Agric. Environ. 2012, 10, 342–346. [Google Scholar] [CrossRef]
- Vastakaite, V.; Virsile, A.; Brazaityte, A.; Samuoliene, G.; Jankauskiene, J.; Sirtautas, R.; Duchovskis, P. The effect of blue light dosage on growth and antioxidant properties of microgreens. Sodin. Daržininkyste 2015, 34, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Ballas, J.P.; Matter, S.F. UV-induced anthocyanin in the host plant Sedum lanceolatum has little effect on feeding by larval Parnassius smintheus. Alpine Bot. 2020, 130, 25–30. [Google Scholar] [CrossRef]
- Landi, M.; Agati, G.; Fini, A.; Guidi, L.; Sebastiani, F.; Tattini, M. Unveiling the shade nature of cyanic leaves: A view from the “blue absorbing side” of anthocyanins. Plant Cell Environ. 2020, 49, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Verdaguer, D.; Jansen, M.A.K.; Llorens, L.; Morales, L.O.; Neugart, S. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 2017, 255, 72–81. [Google Scholar] [CrossRef]
- Lee, J.-H.; Oh, M.-M.; Son, K.-H. Short-Term Ultraviolet (UV)-A Light-Emitting Diode (LED) Radiation Improves Biomass and Bioactive Compounds of Kale. Front. Plant Sci. 2019, 10, 1042. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Son, J.E.; Oh, M.M. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. J. Sci. Food Agric. 2014, 94, 197–204. [Google Scholar] [CrossRef]
- Zhang, L.; Allen, L.H.; Vaughan, M.M.; Hauser, B.A.; Boote, K.J. Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height. Agric. For. Meteorol. 2014, 184, 170–178. [Google Scholar] [CrossRef]
- Dader, B.; Gwynn-Jones, D.; Moreno, A.; Winters, A.; Fereres, A. Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants. J. Photochem. Photobiol. B Biol. 2014, 138, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Sakalauskaite, J.; Viskelis, P.; Dambrauskiene, E.; Sakalauskiene, S.; Samuoliene, G. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L. Sci. Food Agric. 2013, 93, 1266–1271. [Google Scholar] [CrossRef]
- Raymond, B.K. Flavonoids: Biosynthesis, Biological Effects and Dietary Sources; Nova Science Publishers: Hauppauge, NY, USA, 2009; ISBN 1-61761-914-0. [Google Scholar]
- Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kubotab, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Virsile, A.; Brazaityte, A.; Vastakaite-Kairiene, V.; Miliauskiene, J.; Jankauskiene, J.; Novickovas, A.; Lauzike, K.; Samuoliene, G. The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar and organic acid contents in red and green leaf lettuce cultivated in controlled environment. Food Chem. 2020, 310, 125799. [Google Scholar] [CrossRef] [PubMed]
- Proshkin, Y.A.; Smirnov, A.A.; Semenova, N.A.; Dorokhov, A.S.; Burynin, D.A.; Ivanitskikh, A.S.; Panchenko, V.A. Assessment of Ultraviolet Impact on Main Pigment Content in Purple Basil (Ocimum basilicum L.) by the Spectrometric Method and Hyperspectral Images Analysis. Appl. Sci. 2021, 11, 8804. [Google Scholar] [CrossRef]
- Il’chenko, G.N.; Kislun, Y.V.; Ageeva, T.T. Methods of assessment of major components of the essential oil component of the plant material of basil (Ocimum L.). New Technol. 2016, 1, 91–99. [Google Scholar]
- De Vincenzi, M.; Silano, M.; Stacchini, P.; Scazzocchio, B. Constituents of aromatic plants: I. Methyleugenol. Fitoterapia 2000, 71, 216–221. [Google Scholar] [CrossRef]
- Regulation of the European Parliament and of the Council of 16 December 2008 No. 1272/2008 on the Classification, Labeling and Packaging of Chemicals and Mixtures. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R1272 (accessed on 1 September 2021).
- Murárikova, A.; Tazky, A.; Neugebauerova, J.; Plankova, A.; Jampílek, J.; Mucaji, P.; Mikus, P. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Molecules 2017, 22, 1221. [Google Scholar] [CrossRef] [Green Version]
- Lewinsohn, E.; Ziv-Raz, I.; Dudai, N.; Tadmor, Y.; Lastochkin, E.; Larkov, O.; Chaimovitsh, D.; Ravid, U.; Putievsky, E.; Pichersky, E.; et al. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L.). Developmental and chemotypic association of allylphenol O-methyltransferase activities. Plant Sci. 2000, 160, 27–35. [Google Scholar] [CrossRef]
- Ichimura, M.; Noguchi, A.; Kimura, M. Changes in flavor and essential oil components by location of leaf in sweet basil (Ocimum basilicum L.). J. Agric. 2008, 53, 91–95. [Google Scholar]
- Nithia, J.; Shanthi, N. Effect of enhanced solar UV-b (280–320) radiation on physiology and volatile oil synthesis in Ocimum basilicum L. World J. Pharm. Pharm. Sci. 2015, 4, 687–698. [Google Scholar]
- Singh, S.K.; Verma, S.K.; Mathur, A.; Siddiqui, M.A.; Gupta, D.K.; Sharma, B.M. Alterations in antioxidative potential of Ocimum cultivars as a method to characterize UV-B tolerance. Recent Res. Sci. Technol. 2011, 3, 140–148. [Google Scholar]
Growth Light Variant | Photon Flux Density (µmol Photons·m−2·s−1) ± SEM | ||||||
---|---|---|---|---|---|---|---|
UV-C | UV-B | UV-A | Blue Light | Green Light | Red Light | Far Red Light | |
FL | - | - | 0.1 ±0.01 | 25 ± 1.1 | 25 ± 1.2 | 70 ± 3.1 | 9 ± 0.4 |
FL+(UV-A) | - | - | 3.9 ± 0.2 | 25 ± 1.2 | 25 ± 1.3 | 70 ± 3.2 | 9 ± 0.4 |
FL+(UV-A+UV-B) | - | 0.2 ± 0.02 | 1.0 ± 0.08 | 27 ± 1.3 | 25 ± 1.2 | 70 ± 3.2 | 9 ± 0.5 |
FL+(UV-C) | 0.2 ± 0.03 | - | 0.1 ± 0.02 | 25 ± 1.2 | 25 ± 1.3 | 70 ± 3.2 | 9 ± 0.4 |
Combination of Light Spectrum | Average FM/Plant (g) | Average Dry Plant Mass (%)/FM | Average Plant Height (cm) | Average Leaf Surface Area (cm2) | |
---|---|---|---|---|---|
Stems | Leaves | ||||
30th day of cultivation | |||||
FL (Control) | 0.33 ± 0.06 b | 1.47 ± 0.07 b | 8.41 ± 0.10 b | 6.4 ± 0.3 b | 59.9 ± 4.9 b |
FL+(UV-A) | 0.69 ± 0.16 a | 2.62 ± 0.53 a | 8.77 ± 0.17 a | 10.3 ± 1.6 a | 102.2 ± 19.0 a |
FL + (UV-A+UV-B) | 0.73 ± 0.07 a | 2.91 ± 0.37 a | 8.23 ± 0.10 b | 10.1 ± 0.4 a | 116.0 ± 11.1 a |
FL+(UV-C) | 0.22 ± 0.08 b | 0.86 ± 0.23 c | 8.56 ± 0.14 ab | 5.5 ± 1.2 b | 19.2 ± 3.5 c |
60th day of cultivation | |||||
FL (Control) | 2.33 ± 0.26 b | 6.73 ± 0.03 b | 8.15 ± 0.20 b | 17.0 ± 1.0 b | 251.5 ± 16.5 b |
FL+(UV-A) | 5.02 ± 0.36 a | 15.92 ± 2.56 a | 11.81 ± 0.43 c | 32.5 ± 0.5 a | 357.0 ± 19.6 a |
FL + (UV-A+UV-B) | 2.93 ± 0.77 b | 9.29 ± 2.55 ab | 11.01 ± 0.09 c | 26.0 ± 4.0 a | 298.6 ± 14.3 ab |
FL+(UV-C) | 2.09 ± 0.41 b | 5.62 ± 0.55 c | 14.76 ± 2.76 c | 19.5 ± 2.5 ab | 156.7 ± 17.3 c |
FL (Control) | FL+UV-A | FL+(UV-A+UV-B) | FL+(UV-C) | ||
---|---|---|---|---|---|
Total oil content (%) by fresh mass ± SEM | |||||
0.15 ± 0.03 | 0.15 ± 0.05 | 0.22 ± 0.06 | 0.21 ± 0.06 | ||
Essential oil components proportion (%) by total oil content ± SEM | |||||
1 | Pinene | 0.62 ± 0.11 b | 0.34 ± 0.09 c | 0.57 ± 0.10 b | 1.39 ± 0.13 a |
2 | Sabinene | 4.98 ± 1.62 a | 2.13 ± 1.15 b | 3.03 ± 1.15 ab | 1.16 ± 0.87 b |
3 | D-Limonene | 0.64 ± 0.15 ab | 0.52 ± 0.05 ab | 0.46 ± 0.09 b | 0.85 ± 0.17 a |
4 | Eucalyptol | 11.14 ± 3.26 a | 9.65 ± 2.45 a | 9.68 ± 2.97 a | 11.97 ± 4.56 a |
5 | β-trans-Ocimene | 1.45 ± 0.65 b | 2.37 ± 0.75 ab | 2.43 ± 0.76 ab | 2.60 ± 0.58 a |
6 | Terpinolen | 0.26 ± 0.11 a | 0.22 ± 0.13 a | 0.18 ± 0.08 a | 0.2 ± 0.10 a |
7 | Fenchone | 2.62 ± 0.22 a | 0.49 ± 0.13 b | 0.87 ± 0.41 b | 2.48 ± 0.91 a |
8 | Fenchyl acetate | 0.0 ± 0.0 | 0.52 ab ± 0.07 | 0.37 b ± 0.14 | 0.78 a ± 0.22 |
9 | Camphor | 0.37 ± 0.07 b | 1.49 ± 0.81 a | 0.06 ± 0.03 c | 1.57 ± 0.22 a |
10 | Linalool | 10.2 ± 3.8 b | 20.5 ± 4.1 a | 24.3 ± 4.9 a | 3.13 ± 0.98 c |
11 | Bergamotene | 5.0 ± 1.5 a | 4.9 ± 1.1 a | 5.4 ± 1.0 a | 6.1 ± 0.7 a |
12 | β-Farnesene | 1.82 ± 0.81 ab | 1.47 ± 0.37 b | 1.57 ± 0.29 b | 2.44 ± 0.58 a |
13 | α-Guaiene | 0.22 ± 0.08 c | 1.28 ± 0.34 a | 0.44 ± 0.11 b | 0.18 ± 0.09 c |
14 | α-Terpineol | 1.22 ± 0.10 a | 1.05 ± 0.18 a | 1.27 ± 0.12 a | 1.26 ± 0.08 a |
15 | β-Cubebene | 0.05 ± 0.03 c | 0.09 ± 0.01 c | 0.27 ± 0.03 a | 0.20 ± 0.03 b |
16 | Germacrene | 0.10 ± 0.03 a | 0.14 ± 0.04 a | 0.11 ± 0.03 a | 0.11 ± 0.04 a |
17 | α-Bulnesene | 0.05 ± 0.01 b | 0.23 ± 0.07 a | 0.24 ± 0.09 a | 0.23 ± 0.08 a |
18 | Elixene | 0.23 ± 0.08 b | 0.42 ± 0.12 ab | 0.60 ± 0.22 a | 0.11 ± 0.03 c |
19 | γ-Cadinene | 0.0 ± 0.0 | 0.63 ± 0.1 a | 0.06 ± 0.03 b | 0.13 ± 0.05 b |
20 | Eugenol methyl ether | 0.6 ± 0.1 b | 0.0 ± 0.0 | 0.0 ± 0.0 | 17 ± 2 a |
21 | Eugenol | 54 ± 7 a | 49 ± 6 a | 44 ± 6 a | 44 ± 6 a |
22 | Unidentified oils | 3.91 ± 1.3 a | 2.9 ± 1.1 b | 4.19 ± 1.0 a | 2.4 ± 0.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, N.A.; Smirnov, A.A.; Ivanitskikh, A.S.; Izmailov, A.Y.; Dorokhov, A.S.; Proshkin, Y.A.; Yanykin, D.V.; Sarimov, R.R.; Gudkov, S.V.; Chilingaryan, N.O. Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.). Appl. Sci. 2022, 12, 7190. https://doi.org/10.3390/app12147190
Semenova NA, Smirnov AA, Ivanitskikh AS, Izmailov AY, Dorokhov AS, Proshkin YA, Yanykin DV, Sarimov RR, Gudkov SV, Chilingaryan NO. Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.). Applied Sciences. 2022; 12(14):7190. https://doi.org/10.3390/app12147190
Chicago/Turabian StyleSemenova, Natalya A., Alexandr A. Smirnov, Alina S. Ivanitskikh, Andrey Yu. Izmailov, Alexey S. Dorokhov, Yuri A. Proshkin, Denis V. Yanykin, Ruslan R. Sarimov, Sergey V. Gudkov, and Narek O. Chilingaryan. 2022. "Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.)" Applied Sciences 12, no. 14: 7190. https://doi.org/10.3390/app12147190
APA StyleSemenova, N. A., Smirnov, A. A., Ivanitskikh, A. S., Izmailov, A. Y., Dorokhov, A. S., Proshkin, Y. A., Yanykin, D. V., Sarimov, R. R., Gudkov, S. V., & Chilingaryan, N. O. (2022). Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.). Applied Sciences, 12(14), 7190. https://doi.org/10.3390/app12147190