3R Composites: Knockdown Effect Assessment and Repair Efficiency via Mechanical and NDE Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composites Manufacturing
2.2.1. Conventional (RTM6) Panels
2.2.2. 3R Panels
2.3. Equipment for the Mechanical Characterization
2.3.1. Interlaminar Shear Strength (ILSS) Testing
2.3.2. Low-Velocity Impact Testing
2.3.3. Compression after Impact (CAI) Testing
2.3.4. Lap Strap Testing
2.4. Non-Destructive Evaluation Techniques
2.4.1. Acoustic Emission (AE)
2.4.2. IR-Thermography
2.4.3. Impedance Spectroscopy
2.4.4. Electrical Resistance Change Method
2.4.5. Phased Array Ultrasonic Imaging
2.5. Repair Process
2.6. Evaluation of the Knockdown Effect and Repair Efficiency
Mechanical property of a commercial composite) × 100%
Mechanical property of an initial 3R composite) × 100%
3. Results and Discussion
3.1. ILSS Geometry
3.1.1. Knockdown Effect on Mechanical Properties
3.1.2. Non-Destructive Evaluation via Impedance Spectroscopy
3.1.3. Repair Efficiency of 3R Composites
3.1.4. Non-Destructive Evaluation via Impedance Spectroscopy
3.2. Low-Velocity Impact Tests
3.2.1. Knockdown Effect on Mechanical Properties
3.2.2. Non-Destructive Evaluation via Phased Array Ultrasonics and IR Thermography
3.2.3. Repair Efficiency
3.2.4. Non-Destructive Evaluation via Phased Array Ultrasonics and IR Thermography
3.3. Compression after Impact (CAI)
3.3.1. Knockdown Effect on Mechanical Properties
3.3.2. Repair Efficiency
3.4. Lap Strap
3.4.1. Knockdown Effect on Mechanical Properties
3.4.2. Non-Destructive Evaluation via Electrical Resistance Change Method and Acoustic Emission
Acoustic Emission
Electrical Resistance Change Method
3.4.3. Repair Efficiency
3.4.4. Non-Destructive Evaluation
Acoustic Emission
Electrical Resistance Change Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tiwary, A.; Kumar, R.; Chohan, J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2021, 51, 865–870. [Google Scholar] [CrossRef]
- Luan, C.; Movva, S.; Wang, K.; Yao, X.; Zhang, C.; Wang, B. Towards next-generation fibre-reinforced polymer composites: A perspective on multifunctionality. Funct. Compos. Struct. 2019, 1, 042002. [Google Scholar] [CrossRef]
- Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. Multifunct. Mater. 2019, 2, 043001. [Google Scholar] [CrossRef]
- Asghar, S.; Syed, H.K.; Bin Liew, K.; Khan, I.U.; Salman, S. Multifunctional Polymer Matrix Composites. Encycl. Mater. Compos. 2021, 937–946. [Google Scholar] [CrossRef]
- Bekas, D.G.; Sharif-Khodaei, Z.; Baltzis, D.; Aliabadi, M.H.F.; Paipetis, A.S. Quality assessment and damage detection in nanomodified adhesively-bonded composite joints using inkjet-printed interdigital sensors. Compos. Struct. 2019, 211, 557–563. [Google Scholar] [CrossRef]
- Bekas, D.; Grammatikos, S.A.; Kouimtzi, C.; Paipetis, A.S. Linear and non-linear electrical dependency of carbon nanotube reinforced composites to internal damage. IOP Conf. Ser. Mater. Sci. Eng. 2015, 74, 012002. [Google Scholar] [CrossRef]
- Foteinidis, G.; Paipetis, A.S. A novel composite with structural health monitoring functionality via 2D and 3D impedance mapping topography. Appl. Sci. 2021, 11, 1647. [Google Scholar] [CrossRef]
- Li, E.; Pan, Y.; Wang, C.; Liu, C.; Shen, C.; Pan, C.; Liu, X. Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chem. Eng. J. 2021, 420, 129864. [Google Scholar] [CrossRef]
- Karalis, G.; Tzounis, L.; Tsirka, K.; Mytafides, C.K.; Voudouris Itskaras, A.; Liebscher, M.; Lambrou, E.; Gergidis, L.N.; Barkoula, N.M.; Paipetis, A.S. Advanced Glass Fibre Polymer Composite Laminate Operating as a Thermoelectric Generator: A Structural Device for Micropower Generation and Potential Large-Scale Thermal Energy Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 24138–24153. [Google Scholar] [CrossRef]
- Karalis, G.; Mytafides, C.K.; Tzounis, L.; Paipetis, A.S.; Barkoula, N.M. An approach toward the realization of a through-thickness glass fibre/epoxy thermoelectric generator. Materials 2021, 14, 2173. [Google Scholar] [CrossRef]
- Mytafides, C.K.; Tzounis, L.; Karalis, G.; Formanek, P.; Paipetis, A.S. Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications. J. Power Sources 2021, 507, 230323. [Google Scholar] [CrossRef]
- Karalis, G.; Tzounis, L.; Mytafides, C.K.; Tsirka, K.; Formanek, P.; Stylianakis, M.; Kymakis, E.; Paipetis, A.S. A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT:PSS. Appl. Energy 2021, 294, 117004. [Google Scholar] [CrossRef]
- Kosarli, M.; Bekas, D.G.; Tsirka, K.; Baltzis, D.; Vaimakis-Tsogkas, D.; Orfanidis, S.; Papavassiliou, G.; Paipetis, A.S. Microcapsule-based self-healing materials: Healing efficiency and toughness reduction vs. capsule size. Compos. Part B Eng. 2019, 171, 78–86. [Google Scholar] [CrossRef]
- Kosarli, M.; Tsirka, K.; Chalari, S.; Palantza, A.; Paipetis, A.S. Recovery of Fracture Toughness on Self-Healing Epoxies Using Ternary Nanomodified Microcapsules: A Parametric Study. Key Eng. Mater. 2020, 827, 258–262. [Google Scholar] [CrossRef]
- Rodriguez, R.; Bekas, D.G.; Flórez, S.; Kosarli, M.; Paipetis, A.S. Development of self-contained microcapsules for optimised catalyst position in self-healing materials. Polymer 2020, 187, 122084. [Google Scholar] [CrossRef]
- Kosarli, M.; Foteinidis, G.; Tsirka, K.; Bekas, D.G.; Paipetis, A.S. Concurrent recovery of mechanical and electrical properties in nanomodified capsule-based self-healing epoxies. Polymer 2021, 227, 123843. [Google Scholar] [CrossRef]
- Tsilimigkra, X.; Bekas, D.; Kosarli, M.; Tsantzalis, S.; Paipetis, A.; Kostopoulos, V. Mechanical properties assessment of low-content capsule-based self-healing structural composites. Appl. Sci. 2020, 10, 5739. [Google Scholar] [CrossRef]
- Kosarli, M.; Bekas, D.; Tsirka, K.; Paipetis, A.S. Capsule-based self-healing polymers and composites. In Self-Healing Polymer-Based Systems; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128184509. [Google Scholar]
- Kosarli, M.; Polymerou, A.; Foteinidis, G.; Vazouras, C.; Paipetis, A.S. Healing efficiency of CNTs-modified-UF microcapsules that provide higher electrical conductivity and EMI shielding properties. Polymers 2021, 13, 2753. [Google Scholar] [CrossRef]
- Hult, J.; Rammerstorfer, F.G. Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures; Springer: Berlin/Heidelberg, Germany, 1994; ISBN 9783211826522. [Google Scholar]
- Silberschmidt, V. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9789896540821. [Google Scholar]
- Safri, S.N.A.; Sultan, M.T.H.; Yidris, N.; Mustapha, F. Low velocity and high velocity impact test on composite materials—A review. Int. J. Eng. Sci. 2014, 3, 50–60. [Google Scholar]
- Falzon, B.G. Impact damage and repair of composite structures. Aeronaut. J. 2009, 113, 431–445. [Google Scholar] [CrossRef]
- Katunin, A.; Dragan, K.; Dziendzikowski, M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos. Struct. 2015, 127, 1–9. [Google Scholar] [CrossRef]
- Moustakidis, S.; Anagnostis, A.; Karlsson, P.; Hrissagis, K. Non-destructive inspection of aircraft composite materials using triple IR imaging. IFAC-PapersOnLine 2016, 49, 291–296. [Google Scholar] [CrossRef]
- Harizi, W.; Chaki, S.; Bourse, G.; Ourak, M. Mechanical damage assessment of Polymer-Matrix Composites using active infrared thermography. Compos. Part B Eng. 2014, 66, 204–209. [Google Scholar] [CrossRef]
- Maio, L.; Memmolo, V.; Boccardi, S.; Meola, C.; Ricci, F.; Boffa, N.D.; Monaco, E. Ultrasonic and IR Thermographic Detection of a Defect in a Multilayered Composite Plate. Procedia Eng. 2016, 167, 71–79. [Google Scholar] [CrossRef]
- Genest, M.; Martinez, M.; Mrad, N.; Renaud, G.; Fahr, A. Pulsed thermography for non-destructive evaluation and damage growth monitoring of bonded repairs. Compos. Struct. 2009, 88, 112–120. [Google Scholar] [CrossRef]
- Armstrong, K.B.; Cole, W.; Bevan, G. Care and Repair of Advanced Composites; SAE International: Warrendale, PA, USA, 2005; ISBN 0768010624. [Google Scholar]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 2016, 87, 92–119. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Ji, Y.; Wei, Y. Functional epoxy vitrimers and composites. Prog. Mater. Sci. 2021, 120, 100710. [Google Scholar] [CrossRef]
- Weidmann, S.; Volk, P.; Mitschang, P.; Markaide, N. Investigations on Thermoforming of Carbon Fibre Reinforced Epoxy Vitrimer Composites. Compos. Part A Appl. Sci. Manuf. 2021, 154, 106791. [Google Scholar] [CrossRef]
- Zhou, F.; Guo, Z.; Wang, W.; Lei, X.; Zhang, B.; Zhang, H.; Zhang, Q. Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Compos. Sci. Technol. 2018, 167, 79–85. [Google Scholar] [CrossRef]
- Puyadena, M.; Calafel, I.; González de San Román, E.; Martin, L.; González, A.; Irusta, L. Recyclable Epoxy Resin via Simultaneous Dual Permanent/Reversible Crosslinking Based on Diels–Alder Chemistry. Macromol. Chem. Phys. 2021, 222, 20–22. [Google Scholar] [CrossRef]
- Builes Cárdenas, C.; Gayraud, V.; Rodriguez, M.E.; Costa, J.; Salaberria, A.M.; Ruiz de Luzuriaga, A.; Markaide, N.; Dasa Keeryadath, P.; Calderón Zapatería, D. Study into the Mechanical Properties of a New Aeronautic-Grade Epoxy-Based Carbon-Fibre-Reinforced Vitrimer. Polymers 2022, 14, 1223. [Google Scholar] [CrossRef] [PubMed]
- De Luzuriaga, A.R.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fibre-reinforced thermoset composites. Mater. Horiz. 2016, 3, 241–247. [Google Scholar] [CrossRef]
- Ruiz De Luzuriaga, A.; Solera, D.; Azcarate-Ascasua, I.; Boucher, V.; Grande, H.-J.; Rekondo, A. Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. Polymer 2022, 239, 124457. [Google Scholar] [CrossRef]
- Luterbacher, R.; Coope, T.S.; Trask, R.S.; Bond, I.P. Vascular self-healing within carbon fibre reinforced polymer stringer run-out configurations. Compos. Sci. Technol. 2016, 136, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Grammatikos, S.A.; Paipetis, A.S. On the electrical properties of multi scale reinforced composites for damage accumulation monitoring. Compos. Part B Eng. 2012, 43, 2687–2696. [Google Scholar] [CrossRef]
- Todoroki, A. Delamination Monitoring Analysis of CFRP Structures using Multi-Probe Electrical Method. J. Intell. Mater. Syst. Struct. 2008, 19, 291–298. [Google Scholar] [CrossRef]
- Vavouliotis, A.; Paipetis, A.; Kostopoulos, V. On the fatigue life prediction of CFRP laminates using the Electrical Resistance Change method. Compos. Sci. Technol. 2011, 71, 630–642. [Google Scholar] [CrossRef] [Green Version]
- Hine, P.J.; Brew, B.; Duckett, R.A.; Ward, I.M. Failure mechanisms in continuous carbon-fibre reinforced PEEK composites. Compos. Sci. Technol. 1989, 35, 31–51. [Google Scholar] [CrossRef]
- Hine, P.J.; Brew, B.; Duckett, R.A.; Ward, I.M. The fracture behaviour of carbon fibre reinforced poly(ether etherketone). Compos. Sci. Technol. 1988, 33, 35–71. [Google Scholar] [CrossRef]
9 J Impact | ||
---|---|---|
Type of CFRP Specimen | Energy Absorbed (J) | Knockdown Effect |
Conventional Resin (RTM6) | 5.56 ± 0.12 | |
3R Resin | 5.79 ± 0.05 | +4.1% |
Type of CFRP Specimen | Max Load (N) | Knockdown Effect |
Conventional Resin (RTM6) | 6.42 ± 0.15 | |
3R Resin | 6.30 ± 0.28 | −1.8% |
15 J Impact | ||
Type of CFRP Specimen | Energy Absorbed (J) | Knockdown Effect |
Conventional Resin (RTM6) | 9.20 ± 0.09 | |
3R Resin | 9.41 ± 0.17 | +2.2% |
Type of CFRP Specimen | Max Load (N) | Knockdown Effect |
Conventional Resin (RTM6) | 8.42 ± 0.28 | |
3R Resin | 8.11 ± 0.31 | −3.7% |
Debonding Diameter (mm) | ||
---|---|---|
Laminate | 9 J | 15 J |
1 | 17.02 | |
2 | 22.02 | |
3 | 20.98 | |
4 | 21.73 | |
5 | 22.95 | |
6 | 23.7 | |
7 | 24.68 | |
8 | 16.6 | |
9 | 18.69 | |
10 | 14.19 | |
11 | 17.04 | |
Average | 16.71 | 22.68 |
SD | 1.62 | 1.37 |
Debonding Diameter (mm) | ||
---|---|---|
Laminate | 9 J | 15 J |
1 | 23.29 | |
2 | 35.23 | |
3 | 34.52 | |
4 | 36.75 | |
5 | 35.8 | |
6 | 35.02 | |
7 | 35.86 | |
8 | 27.78 | |
9 | 27.81 | |
10 | 28.75 | |
11 | 25.24 | |
12 | 25.69 | |
Average | 26.43 | 35.53 |
SD | 2.05 | 0.78 |
9 J Impact | ||
---|---|---|
Type of CFRP Specimen | Energy Absorbed (J) | Repair Efficiency |
3R Initial | 5.79 ± 0.05 | |
3R Repaired | 5.76 ± 0.06 | 99.3% |
Type of CFRP Specimen | Max Load (N) | Repair Efficiency |
3R Initial | 6.30 ± 0.28 | |
3R Repaired | 5.76 ± 0.11 | 91.4% |
15 J Impact | ||
Type of CFRP Specimen | Energy Absorbed (J) | Repair Efficiency |
3R Initial | 9.41 ± 0.17 | |
3R Repaired | 9.95 ± 0.45 | 105.8% |
Type of CFRP Specimen | Max Load (N) | Repair efficiency |
3R Initial | 8.11 ± 0.31 | |
3R Repaired | 7.08 ± 0.76 | 87.3% |
Debonding Diameter (mm) | ||||
---|---|---|---|---|
Before Repair | After Repair | |||
Laminate | 9 J | 15 J | 9 J | 15 J |
1 | 23.29 | 34.27 | ||
2 | 35.23 | 46.31 | ||
3 | 34.52 | 51.32 | ||
4 | 36.75 | |||
5 | 35.8 | Used for CAI | ||
6 | 35.02 | |||
7 | 35.86 | |||
8 | 27.78 | 37.4 | ||
9 | 27.81 | 36.63 | ||
10 | 28.75 | Used for CAI | ||
11 | 25.24 | |||
12 | 25.69 | |||
Average | 26.43 | 35.53 | 36.1 | 48.82 |
SD | 2.05 | 0.78 | 1.63 | 3.54 |
9 J Impact | ||
---|---|---|
Type of CFRP Specimen | Strength (MPa) | Knockdown Effect |
Conventional Resin (RTM6) | > 216.00 | |
3R Resin | 212.43 ± 12.18 | ≈−1.9% |
Type of CFRP Specimen | Max Load (kN) | Knockdown Effect |
Conventional Resin (RTM6) | > 105.00 | |
3R Resin | 100.59 ± 4.75 | ≈−3.0% |
15 J Impact | ||
Type of CFRP Specimen | Strength (MPa) | Knockdown Effect |
Conventional Resin (RTM6) | 207.80 ± 11.74 | |
3R Resin | 205.54 ± 9.27 | −1.1% |
Type of CFRP Specimen | Max Load (kN) | Knockdown Effect |
Conventional Resin (RTM6) | 98.93 ± 4.91 | |
3R Resin | 94.69 ± 7.06 | −4.3% |
9 J Impact | ||
---|---|---|
Type of CFRP Specimen | Strength (MPa) | Repair Efficiency |
3R Initial | 212.43 ± 12.18 | |
3R Repaired | 170.11 ± 12.32 | 80.1% |
Type of CFRP Specimen | Max Load (kN) | Repair Efficiency |
3R Initial | 100.58 ± 4.57 | |
3R Repaired | 76.29 ± 4.94 | 75.8% |
15 J Impact | ||
Type of CFRP Specimen | Strength (MPa) | Repair Efficiency |
3R Initial | 205.54 ± 9.25 | |
3R Repaired | 153.76 ± 9.27 | 74.8% |
Type of CFRP Specimen | Max Load (kN) | Repair Efficiency |
3R Initial | 94.69 ± 7.06 | |
3R Repaired | 58.28 ± 4.60 | 61.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosarli, M.; Foteinidis, G.; Tsirka, K.; Markaide, N.; Ruiz de Luzuriaga, A.; Calderón Zapatería, D.; Weidmann, S.; Paipetis, A.S. 3R Composites: Knockdown Effect Assessment and Repair Efficiency via Mechanical and NDE Testing. Appl. Sci. 2022, 12, 7269. https://doi.org/10.3390/app12147269
Kosarli M, Foteinidis G, Tsirka K, Markaide N, Ruiz de Luzuriaga A, Calderón Zapatería D, Weidmann S, Paipetis AS. 3R Composites: Knockdown Effect Assessment and Repair Efficiency via Mechanical and NDE Testing. Applied Sciences. 2022; 12(14):7269. https://doi.org/10.3390/app12147269
Chicago/Turabian StyleKosarli, Maria, Georgios Foteinidis, Kyriaki Tsirka, Nerea Markaide, Alaitz Ruiz de Luzuriaga, Diego Calderón Zapatería, Stefan Weidmann, and Alkiviadis S. Paipetis. 2022. "3R Composites: Knockdown Effect Assessment and Repair Efficiency via Mechanical and NDE Testing" Applied Sciences 12, no. 14: 7269. https://doi.org/10.3390/app12147269
APA StyleKosarli, M., Foteinidis, G., Tsirka, K., Markaide, N., Ruiz de Luzuriaga, A., Calderón Zapatería, D., Weidmann, S., & Paipetis, A. S. (2022). 3R Composites: Knockdown Effect Assessment and Repair Efficiency via Mechanical and NDE Testing. Applied Sciences, 12(14), 7269. https://doi.org/10.3390/app12147269