A Review of Sound Field Control
Abstract
:1. Introduction
2. Sound Field Reproduction
2.1. Sound Field Recording
2.2. Typical Techniques for Sound Field Reproduction
2.3. Applications of Sound Field Reproduction
3. Personal Audio Systems
3.1. Basic Theory
3.2. Algorithm Improvements
3.3. Applications of Personal Audio Systems
4. Active Noise Control
4.1. ANC System Model
4.2. Controller Algorithm
4.3. ANC Applications
5. Future Works
- Designing adaptive systems to deal with the variable acoustic environment;
- Combining with psychoacoustics to improve the user’s subjective sense of hearing;
- For personal audio systems, using highly directional loudspeakers to focus more sound energy in the listening area;
- Developing algorithms with low complexity, fast convergence, and good robustness;
- Combining ANC systems and multiple sensors (vision, position, and motion) to control noise more flexibly and achieve noise reduction in a larger area;
- Applying deep learning and communication network to ANC systems.
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammershoi, D.; Moller, H. Methods for binaural recording and reproduction. Acta Acust. United Acust. 2002, 88, 303–311. [Google Scholar]
- Paul, S. Binaural Recording Technology: A Historical Review and Possible Future Developments. Acta Acust. United Acust. 2009, 95, 767–788. [Google Scholar] [CrossRef]
- Chen, C.I.; Wakefield, G.H. Introduction to Head-Related Transfer Functions (HRTFs): Representations of HRTFs in time, frequency and space. J. Audio Eng. Soc. 2001, 49, 231–249. [Google Scholar]
- Majdak, P.; Balazs, P.; Laback, B. Multiple exponential sweep method for fast measurement of head-related transfer functions. J. Audio Eng. Soc. 2007, 55, 623–637. [Google Scholar]
- Berkhout, A.J.; De Vries, D.; Vogel, P. Acoustic control by wave field synthesis. J. Acoust. Soc. Am. 1993, 93, 2764–2778. [Google Scholar] [CrossRef]
- Spors, S.; Rabenstein, R.; Ahrens, J. The theory of wave field synthesis revisited. In Proceedings of the Audio Engineering Society Convention, Amsterdam, The Netherlands, 17–20 May 2008. [Google Scholar]
- Daniel, J. Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new Ambisonic format. In Proceedings of the AES 23rd International Conference, Copenhagen, Denmark, 23–25 May 2003. [Google Scholar]
- Ward, D.; Abhayapala, T. Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE Trans. Speech Audio Process. 2001, 9, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Kirkeby, O.; Nelson, P. Reproduction of plane wave sound fields. J. Acoust. Soc. Am. 1993, 94, 2992–3000. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, Y.-H. Generation of an acoustically bright zone with an illuminated region using multiple sources. J. Acoust. Soc. Am. 2002, 111, 1695–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poletti, M. An investigation of 2D multizone surround sound systems. In Proceedings of the Audio Engineering Society Convention, San Francisco, CA, USA, 2–5 October 2008. [Google Scholar]
- Chang, J.-H.; Lee, C.-H.; Park, J.-Y.; Kim, Y.-H. A realization of sound focused personal audio system using acoustic contrast control. J. Acoust. Soc. Am. 2009, 125, 2091–2097. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.; Snyder, S.; Qiu, X.; Brooks, L.; Moreau, D. Active Control of Noise and Vibration, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Kuo, S.M.; Morgan, D.R. Active Noise Control Systems: Algorithms and DSP Implementations; John and Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Elliott, S. Signal Processing for Active Control; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar] [CrossRef]
- Meyer, J.; Elko, G.W. A spherical microphone array for spatial sound recording. J. Acoust. Soc. Am. 2002, 111, 2346. [Google Scholar] [CrossRef]
- Meyer, J.; Elko, G. A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, 13–17 May 2002. [Google Scholar]
- Rafaely, B. Analysis and design of spherical microphone arrays. IEEE Trans. Speech Audio Process. 2004, 13, 135–143. [Google Scholar] [CrossRef]
- Melon, M.; Langrenne, C.; Herzog, P.; Garcia, A. Evaluation of a method for the measurement of subwoofers in usual rooms. J. Acoust. Soc. Am. 2010, 127, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, P.N.; Abhayapala, T.D.; Poletti, M. Spatial soundfield recording over a large area using distributed higher order microphones. In Proceedings of the 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 16–19 October 2011; pp. 221–224. [Google Scholar] [CrossRef]
- Samarasinghe, P.; Abhayapala, T.; Poletti, M. Wavefield Analysis Over Large Areas Using Distributed Higher Order Microphones. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2014, 22, 647–658. [Google Scholar] [CrossRef]
- Chen, H.; Abhayapala, T.; Zhang, W. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis. J. Acoust. Soc. Am. 2015, 138, 3081–3092. [Google Scholar] [CrossRef] [Green Version]
- Radmanesh, N.; Burnett, I.S. Generation of Isolated Wideband Sound Fields Using a Combined Two-stage Lasso-LS Algorithm. IEEE Trans. Audio, Speech, Lang. Process. 2012, 21, 378–387. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, F.; Yang, J. Time-domain sound field reproduction using the group Lasso. J. Acoust. Soc. Am. 2018, 143, EL55. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.; Nelson, P.A.; Fazi, F.M.; Seo, J. Velocity controlled sound field reproduction by non-uniformly spaced loudspeakers. J. Sound Vib. 2016, 370, 444–464. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wang, J.; Zhang, W.; Zhang, L. Time-Domain Sound Field Reproduction with Pressure and Particle Velocity Jointly Controlled. Appl. Sci. 2021, 11, 10880. [Google Scholar] [CrossRef]
- Gerzon, M. Periphony: With-height sound reproduction. J. Audio Eng. Soc. 1973, 21, 2–10. [Google Scholar]
- Zhang, W.; Abhayapala, T.D. Three Dimensional Sound Field Reproduction using Multiple Circular Loudspeaker Arrays: Functional Analysis Guided Approach. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1184–1194. [Google Scholar] [CrossRef]
- Kentgens, M.; Jax, P. Space Warping Based Dimensionality Reduction of Higher Order Ambisonics Signals. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 131–135. [Google Scholar] [CrossRef]
- Spors, S.; Rabenstein, R. Spatial aliasing artifacts produced by linear and circular loudspeaker arrays used for wave field synthesis. In Proceedings of the Audio Engineering Society Convention, Paris, France, 20–23 May 2006. [Google Scholar]
- Boone, M.M.; Verheijen, E.N.G.; Tol, P.F.V. Spatial sound-field reproduction by wave-field synthesis. J. Audio Eng. Soc. 1995, 43, 1003–1012. [Google Scholar] [CrossRef]
- Boone, M.M. Multi-actuator panels (MAPs) as loudspeaker arrays for wave field synthesis. J. Audio Eng. Soc. 2004, 52, 712–723. [Google Scholar]
- Start, E. Direct Sound Enhancement by Wave Field Synthesis. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1997. [Google Scholar]
- Firtha, G.; Fiala, P.; Schultz, F.; Spors, S. Improved Referencing Schemes for 2.5D Wave Field Synthesis Driving Functions. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1117–1127. [Google Scholar] [CrossRef]
- Winter, F.; Wierstorf, H.; Hold, C.; Krüger, F.; Raake, A.; Spors, S. Colouration in Local Wave Field Synthesis. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2018, 26, 1913–1924. [Google Scholar] [CrossRef]
- Sonke, J.J. Variable Acoustics by Wave Field Synthesis. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2000. [Google Scholar]
- De Bruijn, W.P.J. Application of Wave Field Synthesis in Video conferencing. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2004. [Google Scholar]
- Gálvez, M.F.S.; Elliott, S.J.; Cheer, J. A superdirective array of phase shift sources. J. Acoust. Soc. Am. 2012, 132, 746–756. [Google Scholar] [CrossRef]
- Coleman, P.; Jackson, P.J.B.; Olik, M.; Pedersen, J.A. Personal audio with a planar bright zone. J. Acoust. Soc. Am. 2014, 136, 1725–1735. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-H.; Jacobsen, F. Sound field control with a circular double-layer array of loudspeakers. J. Acoust. Soc. Am. 2012, 131, 4518–4525. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, M.; Yang, J. Sound reproduction in personal audio systems using the least-squares approach with acoustic contrast control constraint. J. Acoust. Soc. Am. 2014, 135, 734–741. [Google Scholar] [CrossRef]
- Elliott, S.J.; Cheer, J.; Choi, J.-W.; Kim, Y. Robustness and Regularization of Personal Audio Systems. IEEE Trans. Audio, Speech, Lang. Process. 2012, 20, 2123–2133. [Google Scholar] [CrossRef]
- Zhu, Q.; Coleman, P.; Wu, M.; Yang, J. Robust Acoustic Contrast Control with Reduced In-situ Measurement by Acoustic Modeling. J. Audio Eng. Soc. 2017, 65, 460–473. [Google Scholar] [CrossRef]
- Elliott, S.J.; Cheer, J. Regularisation and Robustness of Personal Audio Systems; University of Southampton: Southampton, UK, 2011. [Google Scholar]
- Cai, Y.; Wu, M.; Yang, J. Design of a time-domain acoustic contrast control for broadband input signals in personal audio systems. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 341–345. [Google Scholar] [CrossRef]
- Han, Z.; Wu, M.; Zhu, Q.; Yang, J. Three-dimensional wave-domain acoustic contrast control using a circular loudspeaker array. J. Acoust. Soc. Am. 2019, 145, EL488–EL493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, S.J.; Jones, M. An active headrest for personal audio. J. Acoust. Soc. Am. 2006, 119, 2702–2709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheer, J.; Elliott, S.J.; Kim, Y. Practical implementation of personal audio in a mobile device. J. Audio Eng. Soc. 2013, 61, 290–300. [Google Scholar]
- Cheer, J.; Elliott, S.J.; Gálvez, M.F.S. Design and implementation of a car cabin personal audio system. J. Audio Eng. Soc. 2013, 61, 412–424. [Google Scholar]
- Liao, X.; Cheer, J.; Elliott, S.J.; Zheng, S. Design of a Loudspeaker Array for Personal Audio in a Car Cabin. J. Audio Eng. Soc. 2017, 65, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Wu, M.; Liu, L.; Yang, J. Time-domain acoustic contrast control design with response differential constraint in personal audio systems. J. Acoust. Soc. Am. 2014, 135, EL252–EL257. [Google Scholar] [CrossRef] [Green Version]
- Paul, L. Process of Silencing Sound Oscillations. US2043416A. 9 June 1936. Available online: https://patents.google.com/patent/US2043416A/en (accessed on 13 August 2021).
- Haykin, S. Adaptive Filter Theory, 3rd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Lee, K.A.; Gan, W.S.; Kuo, S.M. Subband Adaptive Filtering: Theory and Implementation; John and Wiley and Sons: Chichester, UK, 2009. [Google Scholar]
- Wang, H.; Sun, H.; Sun, Y.; Wu, M.; Yang, J. A narrowband active noise control system with a frequency estimation algorithm based on parallel adaptive notch filter. Signal Process. 2018, 154, 108–119. [Google Scholar] [CrossRef]
- Han, R.; Wu, M.; Liu, F.; Sun, H.; Yang, J. A narrowband active noise control system with a frequency estimator based on Bayesian inference. J. Sound Vib. 2019, 455, 299–311. [Google Scholar] [CrossRef]
- Gong, C.; Wu, M.; Guo, J.; Zhang, Z.; Cao, Y.; Yang, J. Multichannel narrowband active noise control system with a frequency estimator based on DFT coefficients. J. Sound Vib. 2021, 521, 116660. [Google Scholar] [CrossRef]
- Gong, C.; Wu, M.; Guo, J.; Cao, Y.; Zhang, Z.; Yang, J. Modified narrowband active noise control system with frequency mismatch tolerance. Appl. Acoust. 2022, 189, 108598. [Google Scholar] [CrossRef]
- Lu, L.; Yin, K.-L.; de Lamare, R.C.; Zheng, Z.; Yu, Y.; Yang, X.; Chen, B. A survey on active noise control in the past decade–Part II: Nonlinear systems. Signal Process. 2020, 181, 107929. [Google Scholar] [CrossRef]
- Lu, L.; Yin, K.-L.; de Lamare, R.C.; Zheng, Z.; Yu, Y.; Yang, X.; Chen, B. A survey on active noise control in the past decade—Part I: Linear systems. Signal Process. 2021, 183, 108039. [Google Scholar] [CrossRef]
- George, N.V.; Panda, G. Advances in active noise control: A survey, with emphasis on recent nonlinear techniques. Signal Process. 2013, 93, 363–377. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Gan, W.-S.; Kuo, S.M. Recent advances on active noise control: Open issues and innovative applications. APSIPA Trans. Signal Inf. Process. 2012, 1, e3. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Yang, J. A comparative survey of fast affine projection algorithms. Digit. Signal Process. 2018, 83, 297–322. [Google Scholar] [CrossRef]
- An, F.; Cao, Y.; Liu, B. Optimized decentralized filtered-x least mean square algorithm for over-determined systems with periodic disturbances. J. Sound Vib. 2020, 491, 115763. [Google Scholar] [CrossRef]
- Xiao, L.; Wu, M.; Yang, J. A new efficient filtered-x affine projection sign algorithm for active control of impulsive noise. Signal Process. 2016, 120, 456–461. [Google Scholar] [CrossRef]
- Yang, F.; Enzner, G.; Yang, J. On the Convergence Behavior of Partitioned-Block Frequency-Domain Adaptive Filters. IEEE Trans. Signal Process. 2021, 69, 4906–4920. [Google Scholar] [CrossRef]
- Yang, F.; Enzner, G.; Yang, J. New Insights into Convergence Theory of Constrained Frequency-Domain Adaptive Filters. Circuits, Syst. Signal Process. 2020, 40, 2076–2090. [Google Scholar] [CrossRef]
- Yang, F.; Wu, M.; Ji, P.; Yang, J. An Improved Multiband-Structured Subband Adaptive Filter Algorithm. IEEE Signal Process. Lett. 2012, 19, 647–650. [Google Scholar] [CrossRef]
- Yang, F.; Yang, J. Convergence Analysis of Deficient-Length Frequency-Domain Adaptive Filters. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4242–4255. [Google Scholar] [CrossRef]
- Yang, F.; Cao, Y.; Wu, M.; Albu, F.; Yang, J. Frequency-Domain Filtered-x LMS Algorithms for Active Noise Control: A Review and New Insights. Appl. Sci. 2018, 8, 2313. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wu, M.; Yang, J. A Computationally Efficient Delayless Frequency-Domain Adaptive Filter Algorithm. IEEE Trans. Circuits Syst. II: Express Briefs 2013, 60, 222–226. [Google Scholar] [CrossRef]
- Chi, K.; Wu, M.; Han, R.; Gong, C.; Yang, J. Directional Active Noise Control with a Local Minimax Error Criterion. Appl. Sci. 2019, 9, 4065. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Wang, X.; Cui, X.; Wu, M.; Yang, J. Multi-Zone Active Noise Control Strategy for the Scattered Sound Control of an Infinite Rigid Cylinder. Appl. Sci. 2021, 11, 10011. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J. A distributed FxLMS algorithm for narrowband active noise control and its convergence analysis. J. Sound Vib. 2022, 532, 116986. [Google Scholar] [CrossRef]
- Chen, J.; Wu, M.; Gong, C.; Wang, X.; Yang, J. Steady-State Performance Analysis of the Distributed FxLMS Algorithm for Narrowband ANC System with Frequency Mismatch. IEEE Signal Process. Lett. 2022, 29, 1167–1171. [Google Scholar] [CrossRef]
- Han, R.; Wu, M.; Gong, C.; Jia, S.; Han, T.; Sun, H.; Yang, J. Combination of Robust Algorithm and Head-Tracking for a Feedforward Active Headrest. Appl. Sci. 2019, 9, 1760. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, M.; Gong, C.; Yin, L.; Yang, J. Adjustable Structure for Feedback Active Headrest System Using the Virtual Microphone Method. Appl. Sci. 2021, 11, 5033. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, M.; Yin, L.; Gong, C.; Yang, J.; Cao, Y.; Yang, L. Robust parallel virtual sensing method for feedback active noise control in a headrest. Mech. Syst. Signal Process. 2022, 178, 109293. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, C.; Zhang, F.; Li, X. A Low-Complexity Volterra Filtered-Error LMS Algorithm with a Kronecker Product Decomposition. Appl. Sci. 2021, 11, 9637. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, L.; Yao, D.; Li, J.; Yan, Y. A Secondary Path-Decoupled Active Noise Control Algorithm Based on Deep Learning. IEEE Signal Process. Lett. 2021, 29, 234–238. [Google Scholar] [CrossRef]
- Guo, J.; Yang, F.; Yang, J. Convergence analysis of the conventional filtered-x affine projection algorithm for active noise control. Signal Process. 2019, 170, 107437. [Google Scholar] [CrossRef]
- Guo, J.; Yang, F.; Yang, J. Mean-Square Performance of the Modified Filtered-x Affine Projection Algorithm. Circuits, Syst. Signal Process. 2020, 39, 4243–4257. [Google Scholar] [CrossRef]
- Wang, H.; Sun, H.; Guo, J.; Wu, M.; Yang, J. Analysis of the Frequency Interference in the Narrowband Active Noise Control System. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2022, 30, 1704–1717. [Google Scholar] [CrossRef]
- Yang, F. Analysis of Deficient-Length Partitioned-Block Frequency-Domain Adaptive Filters. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2021, 30, 456–467. [Google Scholar] [CrossRef]
- Yang, F.; Guo, J.; Yang, J. Stochastic Analysis of the Filtered-x LMS Algorithm for Active Noise Control. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2020, 28, 2252–2266. [Google Scholar] [CrossRef]
- Krüger, H.; Jeub, M.; Schumacher, T.; Vary, P.; Beaugeant, C. Investigation and development of digital active noise control headsets. In Proceedings of the International Workshop on Acoustic Echo and Noise Control (IWAENC), Tel Aviv, Israel, 30 August–2 September 2010. [Google Scholar]
- Rafaely, B.; Elliott, S. H2/H∞ active control of sound in a headrest: Design and implementation. IEEE Trans. Control Syst. Technol. 1999, 7, 79–84. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xu, J.; Zheng, C.; Li, X. An optimization framework for designing robust cascade biquad feedback controllers on active noise cancellation headphones. Appl. Acoust. 2021, 179, 108081. [Google Scholar] [CrossRef]
- Kuo, S.M.; Nallabolu, S.P. Analysis and correction of frequency error in electronic mufflers using narrowband active noise control. In Proceedings of the IEEE Conference on Control Applications, Singapore, 1–3 October 2007. [Google Scholar]
- Jeon, H.-J.; Chang, T.-G.; Yu, S.; Kuo, S.M. A Narrowband Active Noise Control System with Frequency Corrector. IEEE Trans. Audio, Speech, Lang. Process. 2010, 19, 990–1002. [Google Scholar] [CrossRef]
- Fuller, C.; von Flotow, A. Active control of sound and vibration. IEEE Control Syst. 1995, 15, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.L.; Fuller, C.R. Experiments on active control of structurally radiated sound using multiple piezoceramic actuators. J. Acoust. Soc. Am. 1992, 91, 3313–3320. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, B.; Sampath, A.V.; Park, J. Active control of interior noise in a three-dimensional enclosure. Smart Mater. Struct. 1996, 5, 89–97. [Google Scholar] [CrossRef]
- Sampath, A.; Balachandran, B. Studies on performance functions for interior noise control. Smart Mater. Struct. 1997, 6, 315–332. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wu, M.; Han, L. A Review of Sound Field Control. Appl. Sci. 2022, 12, 7319. https://doi.org/10.3390/app12147319
Yang J, Wu M, Han L. A Review of Sound Field Control. Applied Sciences. 2022; 12(14):7319. https://doi.org/10.3390/app12147319
Chicago/Turabian StyleYang, Jun, Ming Wu, and Lu Han. 2022. "A Review of Sound Field Control" Applied Sciences 12, no. 14: 7319. https://doi.org/10.3390/app12147319
APA StyleYang, J., Wu, M., & Han, L. (2022). A Review of Sound Field Control. Applied Sciences, 12(14), 7319. https://doi.org/10.3390/app12147319