In Silico Study and Excito-Repellent Activity of Vitex negundo L. Essential Oil against Anopheles gambiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Identification of V. negundo Leaves
2.2. Leave Handling and Extraction
2.3. GC-MS Profiling of the Essential Oils
2.4. Preparation of Targets
2.5. Ligands Preparation
2.6. QSAR Studies
2.7. Molecular Docking and Binding Site Prediction
2.8. Molecular Dynamics Simulation
2.9. Rearing, Identification, Genomic DNA Extraction, and PCR Amplification of Anopheles Species
2.10. Mosquito Behavioral Study
3. Results and Discussion
3.1. PCR Confirmation of Anopheles Gambiae s.s
3.2. Chemical Composition of V. negundo Essential Oils
RT | % | Compounds | RIExp | RILit |
---|---|---|---|---|
5.750 | 27.94 | α-pinene | 934 | 931 |
7.271 | 1.28 | sulcatone | 965 | 960 |
7.800 | 8.38 | sabinene | 983 | 975 |
8.289 | 16.78 | myrcene | 994 | 993 |
8.384 | 1.44 | α 3-carene | 1012 | 1010 |
8.805 | 0.65 | (E)-β-ocimene | 1032 | 1029 |
9.192 | 6.72 | Cis-linalool oxide | 1088 | 1086 |
9.633 | 0.88 | trans-linalool oxide | 1098 | 1092 |
9.776 | 1.16 | linalool | 1105 | 1102 |
9.871 | 1.03 | cis-sabinene hydrate | 1178 | 1174 |
10.76 | 1.81 | camphor | 1318 | 1316 |
11.01 | 2.06 | citronellal | 1395 | 1389 |
11.61 | 5.20 | borneol | 1414 | 1409 |
11.96 | 1.05 | α-terpineol | 1445 | 1437 |
12.07 | 1.52 | verbenone | 1456 | 1452 |
12.52 | 0.67 | n-decanal | 1459 | 1454 |
12.61 | 2.87 | geraniol | 1491 | 1489 |
13.01 | 3.95 | linalyl acetate | 1494 | 1492 |
13.47 | 1.94 | bornyl acetate | 1499 | 1498 |
13.86 | 3.71 | 4-terpinenyl acetate | 1526 | 1522 |
14.62 | 0.65 | α-cubebene | 1561 | 1561 |
14.93 | 0.97 | α-ylangene | 1574 | 1574 |
15.56 | 0.82 | α-copaene | 1578 | 1576 |
15.99 | 0.94 | β-bourbonene | 1589 | 1582 |
16.14 | 0.67 | β-elemene | 1599 | 1592 |
16.56 | 0.77 | α-gurjunene | 1610 | 1608 |
16.68 | 0.64 | β-caryophyllene | 1637 | 1638 |
17.10 | 0.68 | trans α bergamotene | 1643 | 1649 |
18.12 | 0.82 | β-selinene | 1889 | 1889 |
18.59 | 0.67 | ledene | 1891 | 1890 |
1.33 | Unknown | |||
Monoterpenes | 80.16 | |||
Sesquiterpenes | 7.63 | |||
Others | 10.88 |
3.3. Molecular Docking
3.4. Amino Acid Interaction of Lead Phytocompounds with Selected A. gambiae OBP
3.5. Efficiency Metrics of Four Ligands
3.6. QSAR Studies
3.7. Frontier Molecular Orbitals (FMO) Studies
3.8. Interpretation of Molecular Dynamic Analysis
3.9. Ligand Properties
3.10. Protein Secondary Structure
3.11. Protein Root Mean Square Fluctuation
3.12. Protein-Ligand Contacts
3.13. Root Mean Square Deviation Analysis
3.14. Response of A. gambiae to the Essential Oil and Selected Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wickremasinghe, R.; Wickremasinghe, A.R.; Fernando, S.D. Climate change and malaria a complex relationship. UN Chron. 2012, 47, 21–25. [Google Scholar] [CrossRef]
- Müller, P.; Pflüger, V.; Wittwer, M.; Ziegler, D.; Chandre, F.; Simard, F.; Lengeler, C. Identification of Cryptic Anopheles Species by Molecular Protein Profiling. PLoS ONE 2013, 8, e57486. [Google Scholar] [CrossRef]
- Omumbo, R.W.S.; Malaria, J.A. Disease and Mortality in Sub-Saharan Africa, 2nd ed.; Jamison, D.T., Feachem, R.G., Makgoba, M.W., Bos, E.R., Baingana, F.K., Hofman, K.J., Rogo, K.O., Eds.; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- World Health Organization. World Health Organization More Pregnant Women and Children Protected from Malaria, but Accelerated Efforts and Funding Needed to Reinvigorate Global Response; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Weiss, D.J.; Bertozzi-Villa, A.; Rumisha, S.F.; Amratia, P.; Arambepola, R.; Battle, K.E.; Cameron, E.; Chestnutt, E.; Gibson, H.S.; Harris, J.; et al. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: A geospatial modelling analysis. Lancet Infect. Dis. 2021, 21, 59–69. [Google Scholar] [CrossRef]
- World Health Organization. WHO Malaria; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Tinto, H.; Otieno, W.; Gesase, S.; Sorgho, H.; Otieno, L.; Liheluka, E.; Valéa, I.; Sing’oei, V.; Malabeja, A.; Valia, D.; et al. Long-term incidence of severe malaria following RTS,S/AS01 vaccination in children and infants in Africa: An open-label 3-year extension study of a phase 3 randomised controlled trial. Lancet Infect. Dis. 2019, 19, 821–832. [Google Scholar] [CrossRef]
- Pryce, J.; Medley, N.; Choi, L. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database Syst. Rev. 2022, 2022, CD012688. [Google Scholar] [CrossRef]
- Plowe, C.V. Malaria chemoprevention and drug resistance: A review of the literature and policy implications. Malar. J. 2022, 21, 1–25. [Google Scholar] [CrossRef]
- Hemingway, J.; Shretta, R.; Wells, T.N.C.; Bell, D.; Djimdé, A.A.; Achee, N.; Qi, G. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria? PLoS Biol. 2016, 14, e1002380. [Google Scholar] [CrossRef]
- Riveron, J.M.; Tchouakui, M.; Mugenzi, L.; Menze, B.D.; Chiang, M.-C.; Wondji, C.S. Insecticide Resistance in Malaria Vectors: An Update at a Global Scale. In Towards Malaria Elimination—A Leap Forward; InTech Open: Rijeka, Croatia, 2018. [Google Scholar]
- World Health Organization. WHO Insecticide Resistance-Global Malaria Programme; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Matiya, D.J.; Philbert, A.B.; Kidima, W.; Matowo, J.J. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017: A systematic review. Malar. J. 2019, 18, 102. [Google Scholar] [CrossRef]
- Fodjo, B.K.; Koudou, B.G.; Tia, E.; Saric, J.; N’Dri, P.B.; Zoh, M.G.; Gba, C.S.; Kropf, A.; Kesse, N.B.; Chouaïbou, M.S. Insecticides Resistance Status of An. gambiae in Areas of Varying Agrochemical Use in Côte D’Ivoire. Biomed. Res. Int. 2018, 2018, 2874160. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.K.; Valecha, N. Antimalarial drug resistance. Recent Adv. Malar. 2016, 10, 383–407. [Google Scholar] [CrossRef]
- Benelli, G.; Jeffries, C.L.; Walker, T. Biological control of mosquito vectors: Past, present, and future. Insects 2016, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Wheelwright, M.; Whittle, C.R.; Riabinina, O. Olfactory systems across mosquito species. Cell Tissue Res. 2021, 383, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Zafar, Z.; Fatima, S.; Bhatti, M.F.; Shah, F.A.; Saud, Z.; Butt, T.M. Odorant Binding Proteins (OBPs) and Odorant Receptors (ORs) of Anopheles stephensi: Identification and comparative insights. PLoS ONE 2022, 17, e0265896. [Google Scholar] [CrossRef] [PubMed]
- Scieuzo, C.; Nardiello, M.; Farina, D.; Scala, A.; Cammack, J.A.; Tomberlin, J.K.; Vogel, H.; Salvia, R.; Persaud, K.; Falabella, P. Hermetia illucens (L.) (diptera: Stratiomyidae) odorant binding proteins and their interactions with selected volatile organic compounds: An in silico approach. Insects 2021, 12, 814. [Google Scholar] [CrossRef]
- Smith, M.B.; March, J. March′s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th ed.; Sixth; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; Volume 6, ISBN 9780471720911. [Google Scholar]
- Rihani, K.; Ferveur, J.F.; Briand, L. The 40-year mystery of insect odorant-binding proteins. Biomolecules 2021, 11, 509. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ren, D.; Zhao, L.; Jiang, F.; Song, J.; Wang, X.; Kang, L. Identification of Odorant-Binding Proteins (OBPs) and functional analysis of phase-related OBPs in the migratory locust. Front. Physiol. 2018, 9, 984. [Google Scholar] [CrossRef] [Green Version]
- da Costa, K.S.; Galúcio, J.M.; da Costa, C.H.S.; Santana, A.R.; Carvalho, V.D.S.; do Nascimento, L.D.; Lima e Lima, A.H.; Cruz, J.N.; Alves, C.N.; Lameira, J. Exploring the Potentiality of Natural Products from Essential Oils as Inhibitors of Odorant-Binding Proteins: A Structure- and Ligand-Based Virtual Screening Approach to Find Novel Mosquito Repellents. ACS Omega 2019, 4, 2475–22486. [Google Scholar] [CrossRef] [Green Version]
- Ullah, Z.; Ullah, R.; Shah, A.-H.A.; Ahmad, I.; Haider, S. Phytochemical and Biological Evaluation of Vitex Negundo Linn: A Review. Int. J. Pharm. Pharm. Sci. 2012, 3, 2421–2431. [Google Scholar]
- Singh; Sharma, P.; Garg, V.; Visht, S. Extraction and analysis of essential oil of Nirgundi (Vitex negundo L.). Der Pharm. Sin. 2011, 2, 262–266. [Google Scholar]
- Ramirez, J.; Garver, L.; Dimopoulos, G. Challenges and Approaches for Mosquito Targeted Malaria Control. Curr. Mol. Med. 2009, 9, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Kapetanovic, I.M. Computer-Aided Drug Discovery and Development (CADDD): In Silico-Chemico-Biological Approach. Chem. Biol. Interact. 2008, 171, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria Antony, D.J.E.; Anoop, M.N. Virtual screening and lead optimisation to identify novel inhibitors for HDAC-8. arXiv 2012, arXiv:1209.2793. [Google Scholar]
- Zhang, S. Computer-Aided Drug Discovery and Development. In Methods in Molecular Biology; Human Press: Totowa, NJ, USA, 2011. [Google Scholar]
- Okoli, B.J.; Ladan, Z.; Mtunzi, F.; Hosea, Y.C. Vitex negundo, L. Essential oil: Odorant binding protein efficiency using molecular docking approach and studies of the mosquito repellent. Insects 2021, 12, 1061. [Google Scholar] [CrossRef] [PubMed]
- Khokra, S.; Prakash, O.; Jain, S.; Aneja, K.; Dhingra, Y. Essential oil composition and antibacterial studies of Vitex negundo Linn. extracts. Indian J. Pharm. Sci. 2008, 70, 522–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Chanotiya, C.S.; Thul, S. Phytochemical diversity in essential oil of Vitex negundo L. populations from India. Rec. Nat. Prod. 2016, 10, 452–464. [Google Scholar]
- Wang, G.; Carey, A.F.; Carlson, J.R.; Zwiebel, L.J. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2010, 107, 4418–4423. [Google Scholar] [CrossRef] [Green Version]
- Tsitoura, P.; Koussis, K.; Iatrou, K. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents. J. Biol. Chem. 2015, 290, 7961–7972. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Choo, Y.M.; De La Rosa, A.; Leal, W.S. Mosquito odorant receptor for DEET and methyl jasmonate. Proc. Natl. Acad. Sci. USA 2014, 111, 16592–16597. [Google Scholar] [CrossRef] [Green Version]
- Bohbot, J.D.; Dickens, J.C. Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents. Neuropharmacology 2012, 62, 2086–2095. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achee, N.L.; Grieco, J.P.; Moore, S.; Bernier, U. Guidelines for Efficacy Testing of Spatial Repellents; WHO: Geneva, Switzerland, 2013; pp. 5–7; 14–15; 28–30; 41–48. [Google Scholar]
- Badolo, A.; Ilboudo-Sanogo, E.; Ouédraogo, A.P.; Costantini, C. Evaluation of the sensitivity of Aedes aegypti and Anopheles gambiae complex mosquitoes to two insect repellents: DEET and KBR 3023. Trop. Med. Int. Health 2004, 9, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Maniafu, B.M.; Wilber, L.; Ndiege, I.O.; Wanjala, C.C.; Akenga, T.A. Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae. Mem. Inst. Oswaldo Cruz 2009, 104, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Gill, B.S.; Mehra, R.; Navgeet; Kumar, S. Vitex negundo and its medicinal value. Mol. Biol. Rep. 2018, 45, 2925–2934. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Chang, T.Y.; Chang, L.Z.; Wang, H.F.; Yih, K.H.; Hsieh, W.Y.; Chang, T.M. Inhibition of melanogenesis Versus antioxidant properties of essential oil extracted from leaves of vitex negundo linn and chemical composition analysis by GC-MS. Molecules 2012, 17, 3902–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonjardim, L.R.; Cunha, E.S.; Guimarães, A.G.; Santana, M.F.; Oliveira, M.G.B.; Serafini, M.R.; Araújo, A.A.S.; Antoniolli, Â.R.; Cavalcanti, S.C.H.; Santos, M.R.V.; et al. Evaluation of the anti-inflammatory and antinociceptive properties of p-Cymene in mice. Z. Nat. Sect. C J. Biosci. 2012, 67, 15–21. [Google Scholar] [CrossRef]
- Conti, B.; Benelli, G.; Flamini, G.; Cioni, P.L.; Profeti, R.; Ceccarini, L.; Macchia, M.; Canale, A. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol. Res. 2012, 110, 2013–2021. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kang, C.-S.; Lee, J.-K.; Kim, Y.-R.; Han, H.-Y.; Yun, H.K. Evaluation of Repellency Effect of Two Natural Aroma Mosquito Repellent Compounds, Citronella and Citronellal. Entomol. Res. 2005, 35, 117–120. [Google Scholar] [CrossRef]
- Rana, V.S.; Dayal, R. Seasonal variation of the essential oil of Vitex negundo leaves. Indian For. 2003, 129, 607–610. [Google Scholar]
- Schultes, S.; De Graaf, C.; Haaksma, E.E.J.; De Esch, I.J.P.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov. Today Technol. 2010, 7, e157–e162. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.W.; Erlanson, D.A.; Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H.; Richmond, N.J. Validity of ligand efficiency metrics. ACS Med. Chem. Lett. 2014, 5, 616–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P.K. Molecular structure, reactivity, and toxicity of the complete series of chlorinated benzenes. J. Phys. Chem. A 2005, 109, 11043–11049. [Google Scholar] [CrossRef] [PubMed]
- Amine, K.; Miri, L.; Naimi, A.; Saile, R.; El Kharrim, A.; Mikou, A.; Kettani, A. Molecular dynamics approach in the comparison of wild-type and mutant paraoxonase-1 apoenzyme form. Bioinform. Biol. Insights 2015, 9, 129–140. [Google Scholar] [CrossRef]
- Sinha, S.; Wang, S.M. Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Comput. Struct. Biotechnol. J. 2020, 18, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Xiaolin, C.; Ivanov, I. Molecular dynamics. Methods Mol. Biol. 2012, 278, 585–586. [Google Scholar] [CrossRef]
- Ogunyemi, O.M.; Gyebi, G.A.; Elfiky, A.A.; Afolabi, S.O.; Ogunro, O.B.; Adegunloye, A.P.; Ibrahim, I.M. Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: An in silico perspective. Antivir. Chem. Chemother. 2020, 28, 2040206620984076. [Google Scholar] [CrossRef]
- Hazarika; Dhiman, S.; Rabha, B.; Bhola, R.; Singh, L. Repellent activity of some essential oils against simulium species in India. J. Insect Sci. 2012, 12, 501. [Google Scholar] [CrossRef] [Green Version]
- Zaidan, M.R.; Noor Rain, A.; Badrul, A.R.; Adlin, A.; Norazah, A.; Zakiah, I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop. Biomed. 2005, 22, 165–170. [Google Scholar]
- Dekel, A.; Yakir, E.; Bohbot, J.D. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochem. Mol. Biol. 2019, 111, 103174. [Google Scholar] [CrossRef]
- Anggraeni, T.; Nisrine, N.; Barlian, A.; Sumarsono, S.H. Repellency of some essential oils against Drosophila melanogaster, vector for bacterium blood disease in banana plantation. J. Entomol. 2018, 15, 125–134. [Google Scholar] [CrossRef]
- Nararak, J.; Di Giorgio, C.; Sukkanon, C.; Mahiou-Leddet, V.; Ollivier, E.; Manguin, S.; Chareonviriyaphap, T. Excito-repellency and biological safety of β-caryophyllene oxide against Aedes albopictus and Anopheles dirus (Diptera: Culicidae). Acta Trop. 2020, 210, 105556. [Google Scholar] [CrossRef] [PubMed]
- Nararak, J.; Sathantriphop, S.; Kongmee, M.; Mahiou-Leddet, V.; Ollivier, E.; Manguin, S.; Chareonviriyaphap, T. Excito-repellent activity of β-caryophyllene oxide against Aedes aegypti and Anopheles minimus. Acta Trop. 2019, 197, 105030. [Google Scholar] [CrossRef] [PubMed]
- Degennaro, M.; McBride, C.S.; Seeholzer, L.; Nakagawa, T.; Dennis, E.J.; Goldman, C.; Jasinskiene, N.; James, A.A.; Vosshall, L.B. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 2013, 498, 487–491. [Google Scholar] [CrossRef] [PubMed]
S/No | Compounds | Binding Energy (Kcal) | Interacting Amino Acid Residues |
---|---|---|---|
1 | Beta-selinene | −12.2 | Phe54, Phe111,Pro41, Tyr49, Phe120 |
2 | Sulcatone | −10.9 | Phe54, Phe111, Phe120, Pro13, Tyr49 |
3 | Beta-caryophyllene | −9.5 | Phe54, Phe111, Phe120, Pro41 |
4 | Alpha-ylangene | −9.3 | Phe54, Phe111, Phe120, Pro41, Tyr49 |
Compounds | LE | LEscale | LLE | FQ | LELP |
---|---|---|---|---|---|
Sulcatone | 1.2111 | 0.6269 | 7.6746 | 1.9320 | 0.2876 |
α-ylangene | 0.6213 | 0.5271 | 6.3137 | 1.1763 | 0.8572 |
β-caryophyllene | 0.6333 | 0.5271 | 6.4752 | 1.2016 | 0.8166 |
β-selinene | 0.8133 | 0.5271 | 8.4638 | 1.5431 | 0.6343 |
Function | Beta-Selinene | Sulcatone | Beta-Caryophyllene | Alpha-Ylangene |
---|---|---|---|---|
Surface Area (Approx) (Å2) | 377.12 | 854.51 | 316.37 | 244.90 |
Surface Area (Grid) (Å2) | 436.07 | 789.53 | 383.68 | 386.42 |
Volume (Å3) | 746.45 | 1357 | 626.27 | 612.24 |
Hydration Energy (Kcal/mole) | 1.02 | −38.48 | −0.04 | −0.10 |
Log P | 5.20 | 6.45 | 0.77 | 0.47 |
Refractivity (Å3) | 41.81 | 73.79 | 28.31 | 19.75 |
Polarizability (Å3) | 27.82 | 48.93 | 14.17 | 14.31 |
Mass (amu) | 214.35 | 542.37 | 180.17 | 180.17 |
Total Energy (kcal/mol) | 18.4378 | 15.5186 | 53.0244 | 96.0766 |
Dipole Moment (Debye) | 0 | 0.5526 | 0 | 0 |
RMS Gradient (kcal/Å mol) | 0.08942 | 0.09325 | 0.0975 | 0.09742 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoli, B.J.; Eltayb, W.A.; Gyebi, G.A.; Ghanam, A.R.; Ladan, Z.; Oguegbulu, J.C.; Abdalla, M. In Silico Study and Excito-Repellent Activity of Vitex negundo L. Essential Oil against Anopheles gambiae. Appl. Sci. 2022, 12, 7500. https://doi.org/10.3390/app12157500
Okoli BJ, Eltayb WA, Gyebi GA, Ghanam AR, Ladan Z, Oguegbulu JC, Abdalla M. In Silico Study and Excito-Repellent Activity of Vitex negundo L. Essential Oil against Anopheles gambiae. Applied Sciences. 2022; 12(15):7500. https://doi.org/10.3390/app12157500
Chicago/Turabian StyleOkoli, Bamidele J., Wafa Ali Eltayb, Gideon A. Gyebi, Amr R. Ghanam, Zakari Ladan, Joseph C. Oguegbulu, and Mohnad Abdalla. 2022. "In Silico Study and Excito-Repellent Activity of Vitex negundo L. Essential Oil against Anopheles gambiae" Applied Sciences 12, no. 15: 7500. https://doi.org/10.3390/app12157500
APA StyleOkoli, B. J., Eltayb, W. A., Gyebi, G. A., Ghanam, A. R., Ladan, Z., Oguegbulu, J. C., & Abdalla, M. (2022). In Silico Study and Excito-Repellent Activity of Vitex negundo L. Essential Oil against Anopheles gambiae. Applied Sciences, 12(15), 7500. https://doi.org/10.3390/app12157500