Special Issue on Optical Sensors and Gauges Based on Plasmonic Resonance
Funding
Acknowledgments
Conflicts of Interest
References
- Altuzar, V.; Mendoza-Barrera, C.; Muñoz, M.L.; Mendoza-Alvarez, J.G.; Sánchez-Sinencio, F. Análisis cuantitativo de interacciones moleculares proteína-proteína mediante la combinación de microarreglos y un lector óptico basado en el fenómeno de resonancia de plasmones superficiales. Rev. Mex. Física 2010, 56, 147–154. [Google Scholar]
- Brongersma, M.L.; Kik, P.G. Surface Plasmon Nanophotonics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Sherry, L.J.; Chang, S.H.; Schatz, G.C.; Van Duyne, R.P.; Wiley, B.J.; Xia, Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038. [Google Scholar] [CrossRef] [PubMed]
- Ueda, J.; Samusawa, M.; Kumagai, K.; Ishida, A.; Tanabe, S. Recreating the Lycurgus effect from silver nanoparticles in solutions and in silica gel. J. Mater. Sci. 2014, 49, 3299–3304. [Google Scholar] [CrossRef]
- Molina, G.; Murcia, S.; Molera, J.; Roldan, C.; Crespo, D.; Pradell, T.J. Color and dichroism of silver-stained glasses. J. Nanopart. Res. 2013, 15, 1932. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Matsubara, K.; Kawata, S.; Minami, S. Optical chemical sensor based on surface-plasmon measurement. Appl. Opt. 1988, 27, 1160–1163. [Google Scholar] [CrossRef] [PubMed]
- Varasteanu, P.; Kusko, M. A Multi-Objective optimization of 2D materials modified surface plasmon resonance (SPR) based sensors: An NSGA II approach. Appl. Sci. 2021, 11, 4353. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative decay of non radiative surface plasmons excited by light. Z. Nat. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Pérez-Ocón, F.; Pozo, A.M.; Serrano, J.M.; Rabaza, O. Sensors for continuous measuring of sucrose solutions using surface plasmon resonance. Appl. Sci. 2022, 12, 1350. [Google Scholar] [CrossRef]
- Pozo, A.M.; Pérez-Ocón, F.; Rabaza, O. A continuous liquid-level sensor for fuel tanks based on surface plasmon resonance. Sensors 2016, 16, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbari, L.; Abedi, K. A multi-purpose sensor based on plasmon-induced transparency in the terahertz range. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 122, 114215. [Google Scholar] [CrossRef]
- Cardoso, M.P.; Silva, A.O.; Romeiro, A.F.; Giraldi, M.T.R.; Costa, J.C.W.A.; Santos, J.L.; Baptista, J.M.; Guerreiro, A. Tunable plasmonic resonance sensor using a metamaterial film in a D-shaped photonic crystal fiber for refractive index measurements. Appl. Sci. 2022, 12, 2153. [Google Scholar] [CrossRef]
- Pérez-Ocón, F.; Pozo, A.M.; Cortina, J.; Rabaza, O. Surface plasmon resonance sensor of CO2 for Indoors and Outdoors. Appl. Sci. 2021, 11, 6869. [Google Scholar] [CrossRef]
- Su, N.; Luo, W.; Wang, L.; Zhang, Z.; Wang, R. A novel dual-wavelength method for evaluating temperature effect in fiber-optic SPR sensors. Appl. Sci. 2021, 11, 9011. [Google Scholar] [CrossRef]
- Sankiewicz, A.; Guszcz, T.; Gorodkiewicz, E. Application of SPRi Biosensors for Determination of 20S Proteasome and UCH-L1 Levels in the serum and urine of transitional bladder cancer patients. Appl. Sci. 2021, 11, 7835. [Google Scholar] [CrossRef]
- Ly, N.H.; Son, S.J.; Kim, H.H.; Joo, S.W. Recent developments in plasmonic sensors of phenol and its derivatives. Appl. Sci. 2021, 11, 10519. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Borges, J.; Lopes, C.; Pereira, R.M.S.; Vasilevskiy, M.I.; Vaz, F. Gas sensors based on localized surface plasmon resonances: Synthesis of oxide films with embedded metal nanoparticles, theory and simulation, and sensitivity enhancement strategies. Appl. Sci. 2021, 11, 5388. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Ocón, F. Special Issue on Optical Sensors and Gauges Based on Plasmonic Resonance. Appl. Sci. 2022, 12, 7564. https://doi.org/10.3390/app12157564
Pérez-Ocón F. Special Issue on Optical Sensors and Gauges Based on Plasmonic Resonance. Applied Sciences. 2022; 12(15):7564. https://doi.org/10.3390/app12157564
Chicago/Turabian StylePérez-Ocón, Francisco. 2022. "Special Issue on Optical Sensors and Gauges Based on Plasmonic Resonance" Applied Sciences 12, no. 15: 7564. https://doi.org/10.3390/app12157564
APA StylePérez-Ocón, F. (2022). Special Issue on Optical Sensors and Gauges Based on Plasmonic Resonance. Applied Sciences, 12(15), 7564. https://doi.org/10.3390/app12157564