Accurate Redetermination of the Focal Depth by Using the Time Intervals between the Inner Core Phases PKIKP and pPKIKP
Abstract
:1. Introduction
2. Methods
2.1. PKIKP and pPKIKP Phases
2.2. Redetermination Algorithm for Focal Depth
2.3. Simulated Annealing
- Basic variables are declared and set to their default values. In the inversion technique, the following parameters were set: (1) An initial model parameter was generated randomly, (2) the initial temperature is set to 100 °C, (3) The maximum number of iterations in the inversion procedure, (4) fitting error threshold .
- Estimate the model parameter in the objective function (2), and the temperature , for the kth iteration. The acceptance of the accepting model parameter from the current is given by the following transition probability:
- Evaluate the objective function . If then the inversion procedure will be terminated, otherwise, , going to step 2.
3. Applications
3.1. The Mw 6.1 Chile Shallow Crustal Earthquake
3.2. The Mw 6.5 Bolivia Deep Earthquake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giovambattista, R.D.; Barba, S. An estimate of hypocentre location accuracy in a large network: Possible implications for tectonic studies in Italy. Geophys. J. Int. 1997, 129, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Engdahl, E.R.; van der Hilst, R.; Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 1998, 88, 722–743. [Google Scholar] [CrossRef]
- Sloan, R.A.; Jackson, J.A.; McKenzie, D.; Priestley, K. Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension. Geophys. J. Int. 2011, 185, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Bondár, I.; Myers, S.C.; Engdahl, E.R.; Bergman, E.A. Epicentre accuracy based on seismic network criteria. Geophys. J. Int. 2004, 156, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; van der Hilst, R.D. Earthquake Depth Phase Extraction with P Wave Autocorrelation Provides Insight into Mechanisms of Intermediate-Depth Earthquakes. Geophys. Res. Lett. 2019, 46, 14440–14449. [Google Scholar] [CrossRef]
- Zhan, Z.; Wei, S.; Ni, S.; Helmberger, D. Earthquake Centroid Locations Using Calibration from Ambient Seismic Noise. Bull. Seismol. Soc. Am. 2011, 101, 1438–1445. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Kao, H.; Yu, J. Depth-Scanning Algorithm: Accurate, Automatic, and Efficient Determination of Focal Depths for Local and Regional Earthquakes. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019430. [Google Scholar] [CrossRef]
- Stein, S.; Wiens, D.A. Depth determination for shallow teleseismic earthquakes: Methods and results. Rev. Geophys. 1986, 24, 806–832. [Google Scholar] [CrossRef]
- Gomberg, J.S.; Shedlock, K.M.; Roecker, S.W. The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bull. Seismol. Soc. Am. 1990, 80, 1605–1628. [Google Scholar] [CrossRef]
- Florez, M.A.; Prieto, G.A. Precise relative earthquake depth determination using array processing techniques. J. Geophys. Res. Solid Earth 2017, 122, 4559–4571. [Google Scholar] [CrossRef]
- Craig, T.J. Accurate Depth Determination for Moderate-Magnitude Earthquakes Using Global Teleseismic Data. J. Geophys. Res. Solid Earth 2019, 124, 1759–1780. [Google Scholar] [CrossRef]
- Heyburn, R.; Selby, N.D.; Fox, B. Estimating earthquake source depths by combining surface wave amplitude spectra and teleseismic depth phase observations. Geophys. J. Int. 2013, 194, 1000–1010. [Google Scholar] [CrossRef] [Green Version]
- Dahal, N.R.; Ebel, J.E. Method for Determination of Depths and Moment Magnitudes of Small-Magnitude Local and Regional Earthquakes Recorded by a Sparse Seismic Network. Bull. Seismol. Soc. Am. 2018, 109, 124–137. [Google Scholar] [CrossRef]
- Gounon, A.; Letort, J.; Cotton, F.; Weatherill, G.; Sylvander, M.; Latour, S. Improving depth estimations of African earthquakes using teleseismic data, and influence for the East-African rift seismic hazard characterization. Geophys. J. Int. 2022, 228, 447–460. [Google Scholar] [CrossRef]
- Weston, J.; Engdahl, E.R.; Harris, J.; Di Giacomo, D.; Storchak, D.A. ISC-EHB: Reconstruction of a robust earthquake data set. Geophys. J. Int. 2018, 214, 474–484. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Engdahl, E.R.; Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Billings, S.D. Simulated annealing for earthquake location. Geophys. J. Int. 1994, 118, 680–692. [Google Scholar] [CrossRef] [Green Version]
Event ID | Latitude (°) | Longitude (°) | Depth (km) | Magnitude | Author | Misfit (s ) |
---|---|---|---|---|---|---|
null | −32.710 | −71.390 | 30.0 | 6.5 | CEA | 21.0 |
gfz2014qngj | −32.641 | −71.284 | 32.7 | 6.4 | GFZ | 3.0 |
usb000s5rc | −32.695 | −71.442 | 32.0 | 6.4 | USGS | 6.1 |
610572067 | −32.688 | −71.351 | 42.0 | 6.2 | ISC-EHB | 46.0 |
null | −32.688 | −71.351 | 34.3 | 6.2 | This method | 0.1 |
Event ID | Latitude (°) | Longitude (°) | Depth (km) | Magnitude | Author | Misfit (s) |
---|---|---|---|---|---|---|
null | −19.170 | −63.800 | 600.0 | 6.3 | CEA | 47.0 |
gfz2014qngj | −19.264 | −63.931 | 592.9 | 6.5 | GFZ | 164.8 |
usb000s5rc | −19.281 | −63.905 | 596.0 | 6.5 | USGS | 104.7 |
610572067 | −19.296 | −63.956 | 602.5 | 6.5 | ISC-EHB | 22.5 |
null | −19.296 | −63.956 | 608.0 | 6.5 | This method | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Gao, W.; Wang, Y.; Yu, S. Accurate Redetermination of the Focal Depth by Using the Time Intervals between the Inner Core Phases PKIKP and pPKIKP. Appl. Sci. 2022, 12, 7669. https://doi.org/10.3390/app12157669
Li C, Gao W, Wang Y, Yu S. Accurate Redetermination of the Focal Depth by Using the Time Intervals between the Inner Core Phases PKIKP and pPKIKP. Applied Sciences. 2022; 12(15):7669. https://doi.org/10.3390/app12157669
Chicago/Turabian StyleLi, Chuan, Wenqi Gao, Youxue Wang, and Songping Yu. 2022. "Accurate Redetermination of the Focal Depth by Using the Time Intervals between the Inner Core Phases PKIKP and pPKIKP" Applied Sciences 12, no. 15: 7669. https://doi.org/10.3390/app12157669
APA StyleLi, C., Gao, W., Wang, Y., & Yu, S. (2022). Accurate Redetermination of the Focal Depth by Using the Time Intervals between the Inner Core Phases PKIKP and pPKIKP. Applied Sciences, 12(15), 7669. https://doi.org/10.3390/app12157669