Stereotactic Positioning System: Towards a Mechanism Used in Thermal Ablation Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Stereotactic Positioning System to Located Micro-Coaxial Antennas
- User height: It was considered that the length of the leg is linked with the height. The average height of Mexican people was considered, i.e., 1.64 m for men and 1.58 m for women [28]; by considering this information, a length system of 70 cm was proposed (See Figure 2a). Therefore, the Z-axis can be displaced and locate the antenna around that 70 cm mark.
- User weight: The user weight is also a factor to be considered to delimit the dimensions of the stereotactic positioning system. Diseases such as overweight and obesity can cause the leg’s subcutaneous adipose tissue to become thicker, affecting its diameter [29]. Therefore, legs with a maximum diameter of 40 cm could be placed; in this case, a maximum antenna length of 17 cm was considered. Figure 2a shows a cylinder (1) representing a transversal view of a human leg placed in the stereotactic positioning system and the direction in which the antenna (2) could be displaced along the Theta-axis.
- Length of the micro-coaxial antennas for thermal ablation: The length of the designed antennas was considered to delimit the stereotactic positioning system’s height, Y-axis (See Figure 1a). Although the typical antenna length is 11 cm, future antenna designs could be longer; therefore, 17 cm were chosen as a limit. The final dimensions of the entire system are presented in Figure 2a,b. Figure 2c shows a representation of a human leg in the system and the corresponding axes.
2.2. Materials Selections
2.3. Stereotactic Positioning System
2.3.1. Z-Axis
2.3.2. Theta-Axis
2.4. Mechanism Displacements
2.5. System Characterization
2.6. Graphic Interface
3. Results
3.1. Stereotactic Positioning System
3.2. Axes Resolution
3.3. Graphic Interface
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renier, C.; Massager, N. Targeting inaccuracy caused by mechanical distortion of the Leksell stereotactic frame during fixation. J. Appl. Clin. Med. Phys. 2019, 20, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khedr, A.S.; Alaminos-Bouza, A.L.; Brown, R.A. Use of the Brown-Roberts-Wells Stereotactic Frame in a Developing Country. Cureus 2018, 10, e2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, A.; Gildenberg, P.; Tasker, R. Textbook of Stereotactic and Functional Neurosurgery; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Trigo Naranjo, J.G.; Anoceto Díaz, J.A. Cirugía estereotáxica en el tratamiento de los tumores cerebrales [Stereotaxic surgery in the treatment of brain tumors]. Acta Médica Centro 2014, 8, 8. [Google Scholar]
- Alptekin, O.; Gubler, F.S.; Ackermans, L.; Kubben, P.L.; Kuijf, M.L.; Kocabicak, E.; Temel, Y. Stereotactic accuracy and frame mounting: A phantom study. Surg. Neurol. Int. 2019, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, S.; Zhang, Q.; Fu, X.; Wu, Y.; Liu, J.; Liang, B.; Yang, Z.; Wang, X. Stereotactic aspiration for hypertensive intracerebral haemorrhage in a Chinese population: A retrospective cohort study. Stroke Vasc. Neurol. 2019, 4, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Aristu, J.; Ciérvide, R.; Guridi, J.; Moreno, M.; Arbea, L.; Azcona, J.; Ramos, L.; Zubieta, J. Radioterapia estereotáctica [Stereotactic radiotherapy]. An. Sist. Sanit. Navar. 2009, 32, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Madrazo-Navarro, I.; Aldana-Herrero, A. Radiocirugía estereotáctica [Stereotactic radiosurgery]. CirugíA Cir. 2005, 73, 137–141. [Google Scholar]
- Salva Camaño, S.N. Historia de la estereotaxia, la braquiterapia y la radiocirugía en Cuba [History of stereotaxy, brachytherapy and radiosurgery in Cuba]. Revista Médica Electrónica 2011, 33, 878–892. [Google Scholar]
- Trujillo Romero, C.J.; Rico Martinez, G.; Gutierrez Martinez, J. Thermal ablation: An alternative to bone cancer. Investigación Discapac. 2018, 7, 35–46. [Google Scholar]
- Tjong, S. Advances in Biomedical Sciences and Engineering; Bentham Science Publishers: Sharjah, United Arab Emirates, 2010. [Google Scholar]
- American Cancer Society. Treating Bone Cancer. Available online: https://www.cancer.org/cancer/bone-cancer/treating.html (accessed on 30 May 2022).
- Karampatzakis, A.; Kühn, S.; Tsanidis, G.; Neufeld, E.; Samaras, T.; Kuster, N. Heating characteristics of antenna arrays used in microwave ablation: A theoretical parametric study. Comput. Biol. Med. 2013, 43, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Laeseke, P.F.; Lee, F.T., Jr.; van der Weide, D.W.; Brace, C.L. Multiple-Antenna Microwave Ablation: Spatially Distributing Power Improves Thermal Profiles and Reduces Invasiveness. J. Interv. Oncol. 2009, 2, 65–72. [Google Scholar] [PubMed]
- Taplin, W.; Preston, S.; Varadarajulu, S.; Hancock, C. Comparison of a Loaded Microwave Monopole Antenna and Bipolar RF Electrode Configuration to Assess Variation in Ablation Zone Growth & Visibility under EUS. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 1634–1636. [Google Scholar] [CrossRef]
- Neagu, V. A study of microwave ablation antenna optimization. In Proceedings of the 2017 E-Health and Bioengineering Conference (EHB), Sinaia, Romania, 22–24 June 2017; pp. 41–44. [Google Scholar] [CrossRef]
- American Cancer Society. Técnicas de Cirugía Menos Invasivas para el Cáncer [Less Invasive Surgical Techniques for Cancer]. Available online: https://www.cancer.org/es/tratamiento/tratamientos-y-efectos-secundarios/tipos-de-tratamiento/cirugia/tecnicas-quirurgicas-especiales.html (accessed on 30 May 2022).
- Simon, C.J.; Dupuy, D.E.; Iannitti, D.A.; Lu, D.S.K.; Yu, N.C.; Aswad, B.I.; Busuttil, R.W.; Lassman, C. Intraoperative Triple Antenna Hepatic Microwave Ablation. Am. J. Roentgenol. 2006, 187, W333–W340. [Google Scholar] [CrossRef] [PubMed]
- Selmi, M.; Iqbal, A.; Smida, A.; Waly, M.I.; Belmabrouk, H. Modeling of heat transfer distribution in tumor breast cancer during microwave ablation therapy. Microw. Opt. Technol. Lett. 2022, 64, 1364–1375. [Google Scholar] [CrossRef]
- Yu, N.C.; Lu, D.S.K.; Raman, S.S.; Dupuy, D.E.; Simon, C.J.; Lassman, C.; Aswad, B.I.; Ianniti, D.; Busuttil, R.W. Hepatocellular Carcinoma: Microwave Ablation with Multiple Straight and Loop Antenna Clusters—Pilot Comparison with Pathologic Findings. Radiology 2006, 239, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaichanyut, M. The Modeling Analysis on Porous Media Hepatic Cancer for Microwave Ablation of an Interstitial Helix-Antenna. In Proceedings of the 2018 7th International Conference on Bioinformatics and Biomedical Science, Shenzhen China, 23–25 June 2018; pp. 59–62.
- Romero, C.J.T.; Martinez, G.R.; Salas, L.L.; Hernandez, A.V.; Martinez, J.G. Micro-Coaxial Slot Antenna to Treat Bone Tumors by Thermal Ablation: Theoretical and Experimental Evaluation. IEEE Lat. Am. Trans. 2018, 16, 2731–2737. [Google Scholar] [CrossRef]
- Ramírez-Guzmán, T.J.; Trujillo-Romero, C.J.; Vera-Hernández, A.; Leija, L. Micro-coaxial Monopole Antenna to Treat Bone Cancer: Design and Preliminary Experimentation. In Proceedings of the 2019 Global Medical Engineering Physics Exchanges/ Pan American Health Care Exchanges (GMEPE/PAHCE), Buenos Aires, Argentina, 26–31 March 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Trujillo-Romero, C.J.; Leija-Salas, L.; Vera-Hernández, A.; Rico-Martínez, G.; Gutiérrez-Martínez, J. Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation. Electronics 2021, 10, 761. [Google Scholar] [CrossRef]
- Luján, F.; Pinilla, B.; Gutiérrez-Martínez, J.; Vera-Hernández, A.; Leija, L.; Trujillo-Romero, C.J. Theoretical model of MW antennas to treat bone tumors: One slot and one slot choked antennas. In Proceedings of the 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 20–22 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mendez Maria, J.; Flores Cuautle, J.J.A.; Trujillo-Romero, C.J. Sistema Estereotáctico para Posicionamiento de Antenas de Ablación [Stereotactic System for Positioning Ablation Antennas]. Ph.D. Thesis, Instituto Tecnologico de Orizaba, Orizaba, Mexico, 2021. [Google Scholar]
- Ramírez-Guzmán, T.J.; Trujillo-Romero, C.J.; Martínez-Valdez, R.; Leija-Salas, L.; Vera-Hernández, A.; Rico-Martínez, G.; Ortega-Palacios, R.; Gutiérrez-Martínez, J. Thermal Evaluation of a Micro-Coaxial Antenna Set to Treat Bone Tumors: Design, Parametric FEM Modeling and Evaluation in Multilayer Phantom and Ex Vivo Porcine Tissue. Electronics 2021, 10, 2289. [Google Scholar] [CrossRef]
- Medidas Población Mexicana [Mexican Population Measures]. 2021. Available online: https://canaive.mx/descargables (accessed on 30 May 2022).
- Wallner, S.J.; Luschnigg, N.; Schnedl, W.J.; Lahousen, T.; Sudi, K.; Crailsheim, K.; Möller, R.; Tafeit, E.; Horejsi, R. Body fat distribution of overweight females with a history of weight cycling. Int. J. Obes. 2004, 28, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiku, M. Elements of Electromagnetics; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Benardete, E.A.; Leonard, M.A.; Weiner, H.L. Comparison of Frameless Stereotactic Systems: Accuracy, Precision, and Applications. Neurosurgery 2001, 49, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Bradac, O.; Steklacova, A.; Nebrenska, K.; Vrana, J.; de Lacy, P.; Benes, V. Accuracy of VarioGuide Frameless Stereotactic System Against Frame-Based Stereotaxy: Prospective, Randomized, Single-Center Study. World Neurosurg. 2017, 104, 831–840. [Google Scholar] [CrossRef] [PubMed]
Material | Advantages | Disadvantages |
---|---|---|
Acrylonitrile butadiene |
| Higher temperatures than the ones used for PLA are required to print 3D parts |
Polylactic acid (PLA) |
| If it is exposed to a temperature higher than 90 C, it could be deformed |
Nylamid XL |
| Parts with high complexity are more difficult to manufacture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez Maria, J.; Lara Hernandez, G.; Trujillo-Romero, C.J.; Martinez Sibaja, A.; Flores Cuautle, J.J.A. Stereotactic Positioning System: Towards a Mechanism Used in Thermal Ablation Therapy. Appl. Sci. 2022, 12, 7795. https://doi.org/10.3390/app12157795
Mendez Maria J, Lara Hernandez G, Trujillo-Romero CJ, Martinez Sibaja A, Flores Cuautle JJA. Stereotactic Positioning System: Towards a Mechanism Used in Thermal Ablation Therapy. Applied Sciences. 2022; 12(15):7795. https://doi.org/10.3390/app12157795
Chicago/Turabian StyleMendez Maria, Jose, Gemima Lara Hernandez, Citlalli Jessica Trujillo-Romero, Albino Martinez Sibaja, and Jose Jesus Agustín Flores Cuautle. 2022. "Stereotactic Positioning System: Towards a Mechanism Used in Thermal Ablation Therapy" Applied Sciences 12, no. 15: 7795. https://doi.org/10.3390/app12157795
APA StyleMendez Maria, J., Lara Hernandez, G., Trujillo-Romero, C. J., Martinez Sibaja, A., & Flores Cuautle, J. J. A. (2022). Stereotactic Positioning System: Towards a Mechanism Used in Thermal Ablation Therapy. Applied Sciences, 12(15), 7795. https://doi.org/10.3390/app12157795