Vibrational Model of Heat Conduction in a Fluid of Hard Spheres
Abstract
:1. Introduction
2. Hard Sphere Fluid
3. Vibrational Model
4. Methods
5. Results
6. Excess Entropy Scaling
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HS | Hard Sphere |
CS | Carnahan and Starling |
MD | Molecular Dynamics |
RDF | Radial distribution function |
Nomenclature
second virial coefficient | |
adiabatic sound velocity | |
longitudinal instantaneous sound velocity | |
transverse instantaneous sound velocity | |
specific heat at constant pressure | |
specific heat at constant volume | |
radial distribution function (RDF) | |
instantaneous (infinite frequency) shear modulus | |
j | energy flux density |
adiabatic bulk modulus | |
instantaneous (infinite frequency) bulk modulus | |
m | mass of an atom (particle) |
instantaneous (infinite frequency) longitudinal modulus | |
P | pressure |
reduced excess entropy | |
T | temperature (in energy units) |
U | internal energy |
thermal velocity | |
compressibility factor | |
excess compressibility factor | |
average interatomic separation | |
/6 | packing fraction |
thermal conductivity coefficient | |
reduced thermal conductivity coefficient | |
density | |
reduced density | |
hard sphere diameter | |
pairwise interaction potential | |
Einstein frequency |
References
- Frenkel, Y. Kinetic Theory of Liquids; Dover: New York, NY, USA, 1955. [Google Scholar]
- Barker, J.A.; Henderson, D. What is “liquid”? Understanding the states of matter. Rev. Mod. Phys. 1976, 48, 587–671. [Google Scholar] [CrossRef]
- Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Courier Corporation: New York, NY, USA, 1984. [Google Scholar]
- Balucani, U.; Zoppi, M. Dynamics of the Liquid State; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- March, N.H.; Tosi, M.P. Introduction to Liquid State Physics; World Scientific Pub Co Inc.: Singapore, 2002. [Google Scholar]
- Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zwanzig, R. On the relation between self-diffusion and viscosity of liquids. J. Chem. Phys. 1983, 79, 4507–4508. [Google Scholar] [CrossRef]
- Balucani, U.; Vallauri, R.; Gaskell, T. Generalized Stokes-Einstein Relation. Ber. Der Bunsenges. Phys. Chem. 1990, 94, 261–264. [Google Scholar] [CrossRef]
- Ohtori, N.; Ishii, Y. Explicit expression for the Stokes-Einstein relation for pure Lennard-Jones liquids. Phys. Rev. E 2015, 91, 012111. [Google Scholar] [CrossRef]
- Ohtori, N.; Miyamoto, S.; Ishii, Y. Breakdown of the Stokes-Einstein relation in pure Lennard-Jones fluids: From gas to liquid via supercritical states. Phys. Rev. E 2017, 95, 052122. [Google Scholar] [CrossRef]
- Ohtori, N.; Uchiyama, H.; Ishii, Y. The Stokes-Einstein relation for simple fluids: From hard-sphere to Lennard-Jones via WCA potentials. J. Chem. Phys. 2018, 149, 214501. [Google Scholar] [CrossRef]
- Costigliola, L.; Heyes, D.M.; Schrøder, T.B.; Dyre, J.C. Revisiting the Stokes-Einstein relation without a hydrodynamic diameter. J. Chem. Phys. 2019, 150, 021101. [Google Scholar] [CrossRef] [Green Version]
- Khrapak, S. Stokes–Einstein relation in simple fluids revisited. Mol. Phys. 2019, 118, e1643045. [Google Scholar] [CrossRef]
- Ohtori, N.; Kondo, Y.; Shintani, K.; Murakami, T.; Nobuta, T.; Ishii, Y. The Stokes-Einstein Relation for Non-spherical Molecular Liquids. Chem. Lett. 2020, 49, 379–382. [Google Scholar] [CrossRef]
- Khrapak, S.A.; Khrapak, A.G. Excess entropy and Stokes-Einstein relation in simple fluids. Phys. Rev. E 2021, 104, 044110. [Google Scholar] [CrossRef]
- Khrapak, S.A. Self-Diffusion in Simple Liquids as a Random Walk Process. Molecules 2021, 26, 7499. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S. Diffusion, viscosity, and Stokes-Einstein relation in dense supercritical methane. J. Mol. Liq. 2022, 354, 118840. [Google Scholar] [CrossRef]
- Rosenfeld, Y. Relation between the transport coefficients and the internal entropy of simple systems. Phys. Rev. A 1977, 15, 2545–2549. [Google Scholar] [CrossRef]
- Rosenfeld, Y. A quasi-universal scaling law for atomic transport in simple fluids. J. Phys. Condens. Matter 1999, 11, 5415–5427. [Google Scholar] [CrossRef]
- Dzugutov, M. A universal scaling law for atomic diffusion in condensed matter. Nature 1996, 381, 137–139. [Google Scholar] [CrossRef]
- Dyre, J.C. Perspective: Excess-entropy scaling. J. Chem. Phys. 2018, 149, 210901. [Google Scholar] [CrossRef] [Green Version]
- Bell, I.H.; Messerly, R.; Thol, M.; Costigliola, L.; Dyre, J.C. Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid. J. Phys. Chem. B 2019, 123, 6345–6363. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, Y. Excess-entropy and freezing-temperature scalings for transport coefficients: Self-diffusion in Yukawa systems. Phys. Rev. E 2000, 62, 7524–7527. [Google Scholar] [CrossRef]
- Rosenfeld, Y. Quasi-universal melting-temperature scaling of transport coefficients in Yukawa systems. J. Phys. Condens. Matter 2001, 13, L39–L43. [Google Scholar] [CrossRef]
- Ohta, H.; Hamaguchi, S. Molecular dynamics evaluation of self-diffusion in Yukawa systems. Phys. Plasmas 2000, 7, 4506–4514. [Google Scholar] [CrossRef] [Green Version]
- Costigliola, L.; Pedersen, U.R.; Heyes, D.M.; Schrøder, T.B.; Dyre, J.C. Communication: Simple liquids’ high-density viscosity. J. Chem. Phys. 2018, 148, 081101. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S. Practical formula for the shear viscosity of Yukawa fluids. AIP Adv. 2018, 8, 105226. [Google Scholar] [CrossRef] [Green Version]
- Khrapak, S.A.; Khrapak, A.G. Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms. Phys. Rev. E 2021, 103, 042122. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S.A.; Khrapak, A.G. Freezing Temperature and Density Scaling of Transport Coefficients. J. Phys. Chem. Lett. 2022, 13, 2674–2678. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S.; Khrapak, A. Freezing density scaling of fluid transport properties: Application to liquified noble gases. J. Chem. Phys. 2022, 157, 014501. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, H.M. Swimming of gyrotactic microorganisms in unsteady flow of eyring Powell nanofluid with variable thermal features: Some bio-technology applications. Int. J. Thermophys. 2020, 41, 1–19. [Google Scholar] [CrossRef]
- Paredes, X.; Lourenco, M.J.; Castro, C.N.D.; Wakeham, W. Thermal conductivity of ionic liquids and IoNanofluids. Can molecular theory help? Fluids 2021, 6, 116. [Google Scholar] [CrossRef]
- Nosenko, V.; Zhdanov, S.; Pustylnik, M.; Thomas, H.M.; Lipaev, A.M.; Novitskii, O.V. Heat transport in a flowing complex plasma in microgravity conditions. Phys. Plasmas 2021, 28, 113701. [Google Scholar] [CrossRef]
- Peng, W.; Chandra, A.; Keblinski, P.; Moran, J.L. Thermal transport dynamics in active heat transfer fluids (AHTF). J. Appl. Phys. 2021, 129, 174702. [Google Scholar] [CrossRef]
- Zhao, A.Z.; Wingert, M.C.; Chen, R.; Garay, J.E. Phonon gas model for thermal conductivity of dense, strongly interacting liquids. J. Appl. Phys. 2021, 129, 235101. [Google Scholar] [CrossRef]
- Chen, G. Perspectives on molecular-level understanding of thermophysics of liquids and future research directions. J. Heat Transf. 2022, 144, 010801. [Google Scholar] [CrossRef]
- Khrapak, S.A. Vibrational model of thermal conduction for fluids with soft interactions. Phys. Rev. E 2021, 103, 013207. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S.A. Thermal conduction in two-dimensional complex plasma layers. Phys. Plasmas 2021, 28, 010704. [Google Scholar] [CrossRef]
- Khrapak, S.A. Thermal conductivity of strongly coupled Yukawa fluids. Phys. Plasmas 2021, 28, 084501. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27, 1208–1209. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, B.M. The hard-sphere model in plasma and gas physics. Sov. Phys.-Usp. 1982, 25, 854–862. [Google Scholar] [CrossRef]
- Mulero, A. (Ed.) Theory and Simulation of Hard-Sphere Fluids and Related Systems; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef] [Green Version]
- Pusey, P.N.; Zaccarelli, E.; Valeriani, C.; Sanz, E.; Poon, W.C.K.; Cates, M.E. Hard spheres: Crystallization and glass formation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 4993–5011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, G.; Zamponi, F. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 2010, 82, 789–845. [Google Scholar] [CrossRef]
- Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 2011, 83, 587–645. [Google Scholar] [CrossRef]
- Klumov, B.A.; Khrapak, S.A.; Morfill, G.E. Structural properties of dense hard sphere packings. Phys. Rev. B 2011, 83, 184105. [Google Scholar] [CrossRef] [Green Version]
- Dyre, J.C. Simple liquids’ quasiuniversality and the hard-sphere paradigm. J. Phys. Condens. Matter 2016, 28, 323001. [Google Scholar] [CrossRef] [Green Version]
- Pieprzyk, S.; Brańka, A.C.; Heyes, D.M.; Bannerman, M.N. A comprehensive study of the thermal conductivity of the hard sphere fluid and solid by molecular dynamics simulation. Phys. Chem. Chem. Phys. 2020, 22, 8834–8845. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.R. Thermal conductivity of liquids. Phys. Rev. 1941, 59, 212. [Google Scholar] [CrossRef]
- Hubbard, J.; Beeby, J.L. Collective motion in liquids. J. Phys. C 1969, 2, 556–571. [Google Scholar] [CrossRef]
- Stillinger, F.H.; Weber, T.A. Hidden structure in liquids. Phys. Rev. A 1982, 25, 978–989. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Velocity Autocorrelations for Hard Spheres. Phys. Rev. Lett. 1967, 18, 988–990. [Google Scholar] [CrossRef]
- Williams, S.R.; Bryant, G.; Snook, I.K.; van Megen, W. Velocity Autocorrelation Functions of Hard-Sphere Fluids: Long-Time Tails upon Undercooling. Phys. Rev. Lett. 2006, 96, 087801. [Google Scholar] [CrossRef] [Green Version]
- Daligault, J. Universal Character of Atomic Motions at the Liquid-Solid Transition. 2020. Available online: https://arxiv.org/abs/2009.14718 (accessed on 1 October 2021).
- Khrapak, S.; Klumov, B.; Couedel, L. Collective modes in simple melts: Transition from soft spheres to the hard sphere limit. Sci. Rep. 2017, 7, 7985. [Google Scholar] [CrossRef] [Green Version]
- Bryk, T.; Huerta, A.; Hordiichuk, V.; Trokhymchuk, A.D. Non-hydrodynamic transverse collective excitations in hard-sphere fluids. J. Chem. Phys. 2017, 147, 064509. [Google Scholar] [CrossRef]
- Yang, C.; Dove, M.T.; Brazhkin, V.V.; Trachenko, K. Emergence and Evolution of the k-Gap in Spectra of Liquid and Supercritical States. Phys. Rev. Lett. 2017, 118, 215502. [Google Scholar] [CrossRef] [Green Version]
- Khrapak, S.A.; Khrapak, A.G.; Kryuchkov, N.P.; Yurchenko, S.O. Onset of transverse (shear) waves in strongly-coupled Yukawa fluids. J. Chem. Phys. 2019, 150, 104503. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkov, N.P.; Mistryukova, L.A.; Brazhkin, V.V.; Yurchenko, S.O. Excitation spectra in fluids: How to analyze them properly. Sci. Rep. 2019, 9, 10483. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S.; Kryuchkov, N.P.; Mistryukova, L.A.; Yurchenko, S.O. From soft- to hard-sphere fluids: Crossover evidenced by high-frequency elastic moduli. Phys. Rev. E 2021, 103, 052117. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S.A.; Yurchenko, S.O. Entropy of simple fluids with repulsive interactions near freezing. J. Chem. Phys. 2021, 155, 134501. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, J.K.; McLaughlin, E. Thermal conductivity of simple molecules in the condensed state. Trans. Faraday Soc. 1960, 56, 206. [Google Scholar] [CrossRef]
- Bridgman, P.W. The Thermal Conductivity of Liquids under Pressure. Proc. Natl. Acad. Sci. USA 1923, 59, 141. [Google Scholar] [CrossRef]
- Cahill, D.G.; Pohl, R. Heat flow and lattice vibrations in glasses. Solid State Commun. 1989, 70, 927–930. [Google Scholar] [CrossRef]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 1992, 46, 6131–6140. [Google Scholar] [CrossRef]
- Xie, X.; Yang, K.; Li, D.; Tsai, T.H.; Shin, J.; Braun, P.V.; Cahill, D.G. High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 2017, 95, 035406. [Google Scholar] [CrossRef] [Green Version]
- Carnahan, N.F.; Starling, K.E. Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys. 1969, 51, 635–636. [Google Scholar] [CrossRef]
- Rosenfeld, Y. Sound velocity in liquid metals and the hard-sphere model. J. Phys. Condens. Matter 1999, 11, L71–L74. [Google Scholar] [CrossRef]
- Khrapak, S.A. Note: Sound velocity of a soft sphere model near the fluid-solid phase transition. J. Chem. Phys. 2016, 144, 126101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, B.N. Elastic Moduli of a Fluid of Rigid Spheres. J. Chem. Phys. 1969, 50, 2733–2740. [Google Scholar] [CrossRef]
- Khrapak, S. Elastic properties of dense hard-sphere fluids. Phys. Rev. E 2019, 100, 032138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, F.M.; Song, Y.; Mason, E.A. Derivative of the hard-sphere radial distribution function at contact. Phys. Rev. A 1992, 46, 8007–8008. [Google Scholar] [CrossRef]
- Khrapak, S.A.; Khrapak, A.G. Minima of shear viscosity and thermal conductivity coefficients of classical fluids. Phys. Fluids 2022, 34, 027102. [Google Scholar] [CrossRef]
- Lifshitz, E.; Pitaevskii, L.P. Physical Kinetics; Elsevier Science: Stanford, CA, USA, 1995. [Google Scholar]
- Bell, I.H.; Galliero, G.; Delage-Santacreu, S.; Costigliola, L. An entropy scaling demarcation of gas- and liquid-like fluid behaviors. J. Chem. Phys. 2020, 152, 191102. [Google Scholar] [CrossRef]
- Khrapak, S.A. Gas-liquid crossover in the Lennard-Jones system. J. Chem. Phys. 2022, 156, 116101. [Google Scholar] [CrossRef]
- Pieprzyk, S.; Bannerman, M.N.; Brańka, A.C.; Chudak, M.; Heyes, D.M. Thermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation. Phys. Chem. Chem. Phys. 2019, 21, 6886–6899. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrapak, S. Vibrational Model of Heat Conduction in a Fluid of Hard Spheres. Appl. Sci. 2022, 12, 7939. https://doi.org/10.3390/app12157939
Khrapak S. Vibrational Model of Heat Conduction in a Fluid of Hard Spheres. Applied Sciences. 2022; 12(15):7939. https://doi.org/10.3390/app12157939
Chicago/Turabian StyleKhrapak, Sergey. 2022. "Vibrational Model of Heat Conduction in a Fluid of Hard Spheres" Applied Sciences 12, no. 15: 7939. https://doi.org/10.3390/app12157939
APA StyleKhrapak, S. (2022). Vibrational Model of Heat Conduction in a Fluid of Hard Spheres. Applied Sciences, 12(15), 7939. https://doi.org/10.3390/app12157939