Geochemical Characterization of Groundwater in the Confined and Unconfined Aquifers of the Northern Italy
Abstract
:1. Introduction
2. Material and Methods
2.1. Geological Setting
2.2. Hydrogeological Setting
2.3. Database Design
2.4. Data Elaboration and Interpretation
- 2243 in phreatic aquifers: 1220 for warm season, and 1023 for cold season;
- 1149 in confined aquifers: 597 for warm season, and 552 for cold season;
- 279 in semi-confined aquifers, equally divided between the two periods.
- The analyses were carried out by at least four regions (Table S1 in Supplementary Material);
- The data population had at least 25% of the values > D.L. (Table S2 in Supplementary Material);
- Presence of regulatory limits for the analyte that impose a maximum allowable concentration.
3. Results and Discussion
3.1. Groundwater Dataset
3.2. Hydrochemical Facies and Major Elements
3.3. Trace Elements and Inorganic Nitrogen
4. Conclusions
5. Recommendations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sugg, Z. Social Barriers to Open (Water) Data. WIREs Water 2022, 9, e1564. [Google Scholar] [CrossRef]
- Qiu, W.; Ma, T.; Wang, Y.; Cheng, J.; Su, C.; Li, J. Review on Status of Groundwater Database and Application Prospect in Deep-Time Digital Earth Plan. Geosci. Front. 2022, 13, 101383. [Google Scholar] [CrossRef]
- Vetrò, A.; Canova, L.; Torchiano, M.; Minotas, C.O.; Iemma, R.; Morando, F. Open Data Quality Measurement Framework: Definition and Application to Open Government Data. Gov. Inf. Q. 2016, 33, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Burt, T.P.; Howden, N.J.K.; Worrall, F. On the Importance of Very Long-term Water Quality Records. WIREs Water 2014, 1, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Normattiva. Decreto Legislativo 3 Aprile 2006, n. 152 Norma in Materia Ambientale. Normattiva. 2006. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2006-04-03;152 (accessed on 12 February 2022).
- Water Framework Directive (WFD). 2000, pp. 1–73. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 14 February 2022).
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; Appelo, C.A.J., Postma, D., Eds.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 978-0-429-15232-0. [Google Scholar]
- Greggio, N.; Giambastiani, B.M.S.; Mollema, P.; Laghi, M.; Capo, D.; Gabbianelli, G.; Antonellini, M.; Dinelli, E. Assessment of the Main Geochemical Processes Affecting Surface Water and Groundwater in a Low-Lying Coastal Area: Implications for Water Management. Water 2020, 12, 1720. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water—A Single Resource; U.S. Geological Survey Circular 1139; U.S. Geological Survey: Reston, VA, USA, 1998; ISBN 0-607-89339-7. [Google Scholar]
- Kharraz, J.E.; El-Sadek, A.; Ghaffour, N.; Mino, E. Water Scarcity and Drought in WANA Countries. Procedia Eng. 2012, 33, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-Y.; Lo, M.-H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.-F.; Ducharne, A.; Yang, Z.-L. Divergent Effects of Climate Change on Future Groundwater Availability in Key Mid-Latitude Aquifers. Nat. Commun. 2020, 11, 3710. [Google Scholar] [CrossRef]
- El Osta, M.; Niyazi, B.; Masoud, M. Groundwater Evolution and Vulnerability in Semi-Arid Regions Using Modeling and GIS Tools for Sustainable Development: Case Study of Wadi Fatimah, Saudi Arabia. Environ. Earth Sci. 2022, 81, 248. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A Multi-Model, Multi-Scenario, and Multi-Domain Analysis of Regional Climate Projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Bruno, L.; Bohacs, K.M.; Campo, B.; Drexler, T.M.; Rossi, V.; Sammartino, I.; Scarponi, D.; Hong, W.; Amorosi, A. Early Holocene Transgressive Palaeogeography in the Po Coastal Plain (Northern Italy). Sedimentology 2017, 64, 1792–1816. [Google Scholar] [CrossRef]
- Dinelli, E.; Lucchini, F. Sediment Supply to the Adriatic Sea Basin from the Italian Rivers: Geochemical Features and Environmental Constraints. G. Geol. 1999, 61, 121–132. [Google Scholar]
- Amorosi, A.; Centineo, M.C.; Dinelli, E.; Lucchini, F.; Tateo, F. Geochemical and Mineralogical Variations as Indicators of Provenance Changes in Late Quaternary Deposits of SE Po Plain. Sediment. Geol. 2002, 151, 273–292. [Google Scholar] [CrossRef]
- Lugli, S.; Bassetti, M.A.; Manzi, V.; Barbieri, M.; Longinelli, A.; Roveri, M. The Messinian ‘Vena Del Gesso’ Evaporites Revisited: Characterization of Isotopic Composition and Organic Matter. Geol. Soc. Lond. Spec. Publ. 2007, 285, 179–190. [Google Scholar] [CrossRef]
- Castiglioni, G.B. Geomorphology of the Po Plain. Geogr. Fis. E Din. Quat. 1999, 7–20. [Google Scholar]
- Pieri, M.; Groppi, G. Subsurface Geological Structure of the Po Plain, Italy. Progett. Final. Geodin. 1981, 414, 1–23. [Google Scholar]
- Picotti, V.; Pazzaglia, F.J. A New Active Tectonic Model for the Construction of the Northern Apennines Mountain Front near Bologna (Italy): Active construction Apennines front. J. Geophys. Res. 2008, 113, B08412. [Google Scholar] [CrossRef] [Green Version]
- Bigi, G.; Cosentino, D.; Parotto, M.; Sartori, R.; Scandone, P. CNR Structural Model of Italy. Scale 1:500.000, Sheets I-II-III-IV; Selca Publisher: Firenze, Italy, 1990. [Google Scholar]
- Ori, G.G. Continental Depositional Systems of the Quaternary of the Po Plain (Northern Italy). Sediment. Geol. 1993, 83, 1–14. [Google Scholar] [CrossRef]
- Ricci Lucchi, F.; Colalongo, M.L.; Cremonini, G.; Gasperi, G.; Iaccarino, S.; Papani, G.; Raffi, I.; Rio, D. Evoluzione Sedimentaria e Paleogeografica Del Margine Appenninico. In Guida Alla Geologia del Margine Appenninico-Padano, Guide Geologiche Regionali; Cremonini, G., Ricci Lucchi, F., Eds.; Societa Geologiche Italiana: Bologna, Italy, 1982. [Google Scholar]
- Amorosi, A.; Pavesi, M.; Ricci Lucchi, M.; Sarti, G.; Piccin, A. Climatic Signature of Cyclic Fluvial Architecture from the Quaternary of the Central Po Plain, Italy. Sediment. Geol. 2008, 209, 58–68. [Google Scholar] [CrossRef]
- Amorosi, A.; Colalongo, M.L.; Fiorini, F.; Fusco, F.; Pasini, G.; Vaiani, S.C.; Sarti, G. Palaeogeographic and Palaeoclimatic Evolution of the Po Plain from 150-Ky Core Records. Glob. Planet. Chang. 2004, 40, 55–78. [Google Scholar] [CrossRef]
- Campo, B.; Bruno, L.; Amorosi, A. Basin-Scale Stratigraphic Correlation of Late Pleistocene-Holocene (MIS 5e-MIS 1) Strata across the Rapidly Subsiding Po Basin (Northern Italy). Quat. Sci. Rev. 2020, 237, 106300. [Google Scholar] [CrossRef]
- Massari, F.; Rio, D.; Serandrei Barbero, R.; Asioli, A.; Capraro, L.; Fornaciari, E.; Vergerio, P.P. The Environment of Venice Area in the Past Two Million Years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 202, 273–308. [Google Scholar] [CrossRef]
- Fontana, A.; Mozzi, P.; Bondesan, A. Late Pleistocene Evolution of the Venetian–Friulian Plain. Rend. Fis. Acc. Lincei 2010, 21, 181–196. [Google Scholar] [CrossRef]
- Amorosi, A.; Bruno, L.; Campo, B.; Costagli, B.; Dinelli, E.; Hong, W.; Sammartino, I.; Vaiani, S.C. Tracing Clinothem Geometry and Sediment Pathways in the Prograding Holocene Po Delta System through Integrated Core Stratigraphy. Basin Res. 2020, 32, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Bruno, L.; Piccin, A.; Sammartino, I.; Amorosi, A. Decoupled Geomorphic and Sedimentary Response of Po River and Its Alpine Tributaries during the Last Glacial/Post-Glacial Episode. Geomorphology 2018, 317, 184–198. [Google Scholar] [CrossRef]
- Fontana, A.; Mozzi, P.; Bondesan, A. Alluvial Megafans in the Venetian–Friulian Plain (North-Eastern Italy): Evidence of Sedimentary and Erosive Phases during Late Pleistocene and Holocene. Quat. Int. 2008, 189, 71–90. [Google Scholar] [CrossRef]
- Fontana, A.; Mozzi, P.; Marchetti, M. Alluvial Fans and Megafans along the Southern Side of the Alps. Sediment. Geol. 2014, 301, 150–171. [Google Scholar] [CrossRef]
- Amorosi, A.; Farina, M.; Severi, P.; Preti, D.; Caporale, L.; Di Dio, G. Genetically Related Alluvial Deposits across Active Fault Zones: An Example of Alluvial Fan-Terrace Correlation from the Upper Quaternary of the Southern Po Basin, Italy. Sediment. Geol. 1996, 102, 275–295. [Google Scholar] [CrossRef]
- Brandolini, F.; Carrer, F. Assessing the Role of Alluvial Geomorphology for Late-Holocene Settlement Strategies (Po Plain–N Italy) through Point Pattern Analysis. Environ. Archaeol. 2021, 26, 511–525. [Google Scholar] [CrossRef]
- Campo, B.; Bohacs, K.M.; Amorosi, A. Late Quaternary Sequence Stratigraphy as a Tool for Groundwater Exploration: Lessons from the Po River Basin (Northern Italy). Bulletin 2020, 104, 681–710. [Google Scholar] [CrossRef]
- Amorosi, A.; Pavesi, M. Memorie Descrittive della Carta Geologica d’Italia; ISPRA: Rome, Italy, 2009; pp. 7–20. [Google Scholar]
- Bersezio, R.; Bini, A.; Felletti, F. Il Quaternario; 2004; pp. 361–378. [Google Scholar]
- De Luca, D.A.; Lasagna, M.; Debernardi, L. Hydrogeology of the Western Po Plain (Piedmont, NW Italy). J. Maps 2020, 16, 265–273. [Google Scholar] [CrossRef]
- Regione Emilia-Romagna. ENI-AGIP Riserve Idriche Sotterranee della Regione Emilia-Romagna; S.EL.CA: Firenze, Italy, 1998. [Google Scholar]
- Regione Lombardia. ENI-AGIP Geologia Degli Acquiferi Padani della Regione Lombardia; S.EL.CA: Firenze, Italy, 2002. [Google Scholar]
- Fabbri, P.; Piccinini, L. Assessing Transmissivity from Specific Capacity in an Alluvial Aquifer in the Middle Venetian Plain (NE Italy). Water Sci. Technol. 2013, 67, 2000–2008. [Google Scholar] [CrossRef]
- Martinelli, G.; Dadomo, A.; De Luca, D.A.; Mazzola, M.; Lasagna, M.; Pennisi, M.; Pilla, G.; Sacchi, E.; Saccon, P. Nitrate Sources, Accumulation and Reduction in Groundwater from Northern Italy: Insights Provided by a Nitrate and Boron Isotopic Database. Appl. Geochem. 2018, 91, 23–35. [Google Scholar] [CrossRef]
- Giambastiani, B.M.S.; Colombani, N.; Mastrocicco, M.; Fidelibus, M.D. Characterization of the Lowland Coastal Aquifer of Comacchio (Ferrara, Italy): Hydrology, Hydrochemistry and Evolution of the System. J. Hydrol. 2013, 501, 35–44. [Google Scholar] [CrossRef]
- Giambastiani, B.M.; Colombani, N.; Mastrocicco, M. Multilevel characterization of vertical hydraulic gradients, permeability, temperature and salinity in shallow coastal aquifers with low pressure packers. In Proceedings of the 22nd Salt Water Intrusion Meeting: Salt Water Intrusion in Aquifers: Challenges and Perspectives, Cagliari, Italy; 2012; pp. 140–143. [Google Scholar]
- Mastrocicco, M.; Giambastiani, B.M.S.; Severi, P.; Colombani, N. The Importance of Data Acquisition Techniques in Saltwater Intrusion Monitoring. Water Resour. Manag. 2012, 26, 2851–2866. [Google Scholar] [CrossRef]
- Vorlicek, P.A.; Antonelli, R.; Fabbri, P.; Rausch, R. Quantitative Hydrogeological Studies of the Treviso Alluvial Plain, NE Italy. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 23–29. [Google Scholar] [CrossRef] [Green Version]
- De Luca, D.A.; Destefanis, E.; Forno, M.G.; Lasagna, M.; Masciocco, L. The Genesis and the Hydrogeological Features of the Turin Po Plain Fontanili, Typical Lowland Springs in Northern Italy. Bull. Eng. Geol. Env. 2014, 73, 109–427. [Google Scholar] [CrossRef]
- Fumagalli, N.; Senes, G.; Ferrario, P.S.; Toccolini, A. A Minimum Indicator Set for Assessing Fontanili (Lowland Springs) of the Lombardy Region in Italy. Eur. Countrys. 2017, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- D.Lgs 30/09 Attuazione Della Direttiva 2006/118/CE, Relativa Alla Protezione Delle Acque Sotterranee Dall’inquinamento e Dal Deterioramento. Off. Gaz. 2009. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2009-03-16;30 (accessed on 20 February 2022).
- D.M. 260/10 Regolamento Recante i Criteri Tecnici per La Classificazione Dello Stato Dei Corpi Idrici Superficiali; Ministero Dell’ambiente e della Tutela del Territorio e del Mare: Rome, Italy, 2011.
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources. In Techniques of Water-Resources Investigations of the United States Geological Survey; Hydrologic Analysis and Interpretation; U.S. Geological Survey: Reston, VA, USA, 2022; Book 4. [Google Scholar]
- Harter, T. Nondetects and Data Analysis: Statistics for Censored Environmental Data. Vadose Zone J. 2006, 5, 508–509. [Google Scholar] [CrossRef]
- Lee, L.; Helsel, D. Statistical Analysis of Water-Quality Data Containing Multiple Detection Limits II: S-Language Software for Nonparametric Distribution Modeling and Hypothesis Testing. Comput. Geosci. 2007, 33, 696–704. [Google Scholar] [CrossRef]
- Kruskal, W.H. A Nonparametric Test for the Several Sample Problem. Ann. Math. Statist. 1952, 23, 525–540. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Langelier, W.F.; Ludwig, H.F. Graphical Methods for Indicating the Mineral Character of Natural Waters. J. Am. Water Work Assoc. 1942, 34, 335–352. [Google Scholar] [CrossRef]
- Antonellini, M.; Mollema, P.; Giambastiani, B.; Bishop, K.; Caruso, L.; Minchio, A.; Pellegrini, L.; Sabia, M.; Ulazzi, E.; Gabbianelli, G. Salt Water Intrusion in the Coastal Aquifer of the Southern Po Plain, Italy. Hydrogeol. J. 2008, 16, 1541–1556. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Giambastiani, B.M.S. Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy). Water Resour. Manag. 2015, 29, 603–618. [Google Scholar] [CrossRef]
- Giambastiani, B.M.S.; Kidanemariam, A.; Dagnew, A.; Antonellini, M. Evolution of Salinity and Water Table Level of the Phreatic Coastal Aquifer of the Emilia Romagna Region (Italy). Water 2021, 13, 372. [Google Scholar] [CrossRef]
- De Waele, J.; Piccini, L.; Columbu, A.; Madonia, G.; Vattano, M.; Calligaris, C.; D’Angeli, I.; Parise, M.; Chiesi, M.; Sivelli, M.; et al. Evaporite Karst in Italy: A Review. IJS 2017, 46, 137–168. [Google Scholar] [CrossRef] [Green Version]
- Conti, A.; Sacchi, E.; Chiarle, M.; Martinelli, G.; Zuppi, G.M. Geochemistry of the Formation Waters in the Po Plain (Northern Italy): An Overview. Appl. Geochem. 2000, 15, 51–65. [Google Scholar] [CrossRef]
- Pilla, G.; Sacchi, E.; Zuppi, G.; Braga, G.; Ciancetti, G. Hydrochemistry and Isotope Geochemistry as Tools for Groundwater Hydrodynamic Investigation in Multilayer Aquifers: A Case Study from Lomellina, Po Plain, South-Western Lombardy, Italy. Hydrogeol. J. 2006, 14, 795–808. [Google Scholar] [CrossRef]
- Martelli, G.; Granati, C. Hydrochemical general characteristics of the Friuli Plain’s deep aquifers (Northern Italy). Ital. J. Eng. Geol. Environ. 2010, 1, 79–92. [Google Scholar] [CrossRef]
- Golubić, S.; Schneider, J. Chapter 2.4 Carbonate Dissolution. In Studies in Environmental Science; Elsevier: Amsterdam, The Netherlands, 1979; Volume 3, pp. 107–129. ISBN 978-0-444-41745-9. [Google Scholar]
- Piana, F.; Fioraso, G.; Irace, A.; Mosca, P.; d’Atri, A.; Barale, L.; Falletti, P.; Monegato, G.; Morelli, M.; Tallone, S.; et al. Geology of Piemonte Region (NW Italy, Alps–Apennines Interference Zone). J. Maps 2017, 13, 395–405. [Google Scholar] [CrossRef]
- Dal Piaz, G.V. The Italian Alps: A journey across two centuries of Alpine geology. The Geology of Italy: Tectonics and life along plate margins. J. Virtual Explor. 2010, 36, 77–106. [Google Scholar] [CrossRef]
- Manzi, V.; Lugli, S.; Lucchi, F.R.; Roveri, M. Deep-Water Clastic Evaporites Deposition in the Messinian Adriatic Foredeep (Northern Apennines, Italy): Did the Mediterranean Ever Dry Out? Sedimentology 2005, 52, 875–902. [Google Scholar] [CrossRef]
- Pilla, G.; Sacchi, E.; Gerbert-Gaillard, L.; Zuppi, G.M.; Peloso, G.F.; Ciancetti, G.G. Origine e distribuzione dei nitrati in falda nella Pianura Padana occidentale (Province di Novara, Alessandria e Pavia). Geol. Appl. 2005, 2, 144–150. [Google Scholar]
- Martinelli, G.; Chahoud, A.; Dadomo, A.; Fava, A. Isotopic Features of Emilia-Romagna Region (North Italy) Groundwaters: Environmental and Climatological Implications. J. Hydrol. 2014, 519, 1928–1938. [Google Scholar] [CrossRef]
- Mollema, P.N.; Antonellini, M.; Dinelli, E.; Gabbianelli, G.; Greggio, N.; Stuyfzand, P.J. Hydrochemical and Physical Processes Influencing Salinization and Freshening in Mediterranean Low-Lying Coastal Environments. Appl. Geochem. 2013, 34, 207–221. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N. The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Ma, T. Isotope and Minor Element Geochemistry of High Arsenic Groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl. Geochem. 2009, 24, 587–599. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Groves, C.; Yuan, D.; Kambesis, P. Natural and Anthropogenic Factors Affecting the Groundwater Quality in the Nandong Karst Underground River System in Yunan, China. J. Contam. Hydrol. 2009, 109, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of Anthropogenic and Natural Processes on the Evolution of Groundwater Chemistry in a Rapidly Urbanized Coastal Area, South China. Sci. Total Environ. 2013, 463–464, 209–221. [Google Scholar] [CrossRef]
- Vanzetti, C.; Gianoglio, N.; Sesia, E. ARPA Piemonte. Studio sulla Contaminazione Diffusa da Solventi Clorurati nelle Acque Sotterranee 2016. Available online: https://www.arpa.piemonte.it/approfondimenti/temi-ambientali/acqua/acque-sotterranee/studio-sulla-contaminazione-diffusa-da-solventi-clorurati-nelle-acque-sotterranee (accessed on 1 March 2022).
- Margiotta, S.; Mongelli, G.; Summa, V.; Paternoster, M.; Fiore, S. Trace Element Distribution and Cr(VI) Speciation in Ca-HCO3 and Mg-HCO3 Spring Waters from the Northern Sector of the Pollino Massif, Southern Italy. J. Geochem. Explor. 2012, 115, 1–12. [Google Scholar] [CrossRef]
- Morrison, J.M.; Goldhaber, M.B.; Mills, C.T.; Breit, G.N.; Hooper, R.L.; Holloway, J.M.; Diehl, S.F.; Ranville, J.F. Weathering and Transport of Chromium and Nickel from Serpentinite in the Coast Range Ophiolite to the Sacramento Valley, California, USA. Appl. Geochem. 2015, 61, 72–86. [Google Scholar] [CrossRef]
- Chiogna, G.; Skrobanek, P.; Narany, T.S.; Ludwig, R.; Stumpp, C. Effects of the 2017 Drought on Isotopic and Geochemical Gradients in the Adige Catchment, Italy. Sci. Total Environ. 2018, 645, 924–936. [Google Scholar] [CrossRef]
- Giuliano, G. Ground Water in the Po Basin: Some Problems Relating to Its Use and Protection. Sci. Total Environ. 1995, 171, 17–27. [Google Scholar] [CrossRef]
- Soana, E.; Racchetti, E.; Laini, A.; Bartoli, M.; Viaroli, P. Soil Budget, Net Export, and Potential Sinks of Nitrogen in the Lower Oglio River Watershed (Northern Italy). Clean Soil Air Water 2011, 39, 956–965. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A.; Franchino, E. Nitrate Contamination of Groundwater in the Western Po Plain (Italy): The Effects of Groundwater and Surface Water Interactions. Environ. Earth Sci. 2016, 75, 240. [Google Scholar] [CrossRef]
- Rotiroti, M.; Bonomi, T.; Sacchi, E.; McArthur, J.M.; Stefania, G.A.; Zanotti, C.; Taviani, S.; Patelli, M.; Nava, V.; Soler, V.; et al. The Effects of Irrigation on Groundwater Quality and Quantity in a Human-Modified Hydro-System: The Oglio River Basin, Po Plain, Northern Italy. Sci. Total Environ. 2019, 672, 342–356. [Google Scholar] [CrossRef]
- Viaroli, P.; Soana, E.; Pecora, S.; Laini, A.; Naldi, M.; Fano, E.A.; Nizzoli, D. Space and Time Variations of Watershed N and P Budgets and Their Relationships with Reactive N and P Loadings in a Heavily Impacted River Basin (Po River, Northern Italy). Sci. Total Environ. 2018, 639, 1574–1587. [Google Scholar] [CrossRef] [PubMed]
- D.Lgs 31/01 Attuazione Della Direttiva 98/83/CE Relativa Alla Qualità Delle Acque Destinate al Consumo Umano. Off. Gaz. 2001. Available online: https://web.camera.it/parlam/leggi/deleghe/01031dl.htm (accessed on 2 March 2022).
- ARPAV. Le Acque Sotterranee Della Pianura Veneta-I Risultati Del Progetto SAMPAS; ARPAV: Venice, Italy, 2008. [Google Scholar]
- ARPAE. Valutazione dello Stato delle Acque Sotterranee 2014; ARPAE: Casalecchio Di Reno, Italy, 2018. [Google Scholar]
- Mastrocicco, M.; Giambastiani, B.M.S.; Colombani, N. Ammonium Occurrence in a Salinized Lowland Coastal Aquifer (Ferrara, Italy). Hydrol. Processes. 2013, 27, 3495–3501. [Google Scholar] [CrossRef]
- Azadi, A.; Baghernejad, M.; Gholami, A.; Shakeri, S. Forms and Distribution Pattern of Soil Fe (Iron) and Mn (Manganese) Oxides Due to Long-Term Rice Cultivation in Fars Province Southern Iran. Commun. Soil Sci. Plant Anal. 2021, 52, 1894–1911. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, X.; Xia, X.; Wang, B.; Teng, Y.; Li, X. Elevated Fe and Mn Concentrations in Groundwater in the Songnen Plain, Northeast China, and the Factors and Mechanisms Involved. Agronomy 2021, 11, 2392. [Google Scholar] [CrossRef]
- Rotiroti, M.; Fumagalli, L.; Bonomi, T. Come gestire potenziali contaminazioni da As, Fe e Mn nelle acque sotterranee della bassa Pianura Padana: Una proposta dal caso studio di Cremona. Acque Sotter.-Ital. J. Groundw. 2014, 2, 9–16. [Google Scholar] [CrossRef]
- Postma, D.; Larsen, F.; Minh Hue, N.T.; Duc, M.T.; Viet, P.H.; Nhan, P.Q.; Jessen, S. Arsenic in Groundwater of the Red River Floodplain, Vietnam: Controlling Geochemical Processes and Reactive Transport Modeling. Geochim. Cosmochim. Acta 2007, 71, 5054–5071. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, D.; Wen, D.; Wu, Y.; Ni, P.; Jiang, Y.; Guo, Q.; Li, F.; Zheng, H.; Zhou, Y. Arsenic Mobilization in Aquifers of the Southwest Songnen Basin, P.R. China: Evidences from Chemical and Isotopic Characteristics. Sci. Total Environ. 2014, 490, 590–602. [Google Scholar] [CrossRef]
- Carraro, A.; Fabbri, P.; Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F. Effects of Redox Conditions on the Control of Arsenic Mobility in Shallow Alluvial Aquifers on the Venetian Plain (Italy). Sci. Total Environ. 2015, 532, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Rotiroti, M.; Jakobsen, R.; Fumagalli, L.; Bonomi, T. Arsenic Release and Attenuation in a Multilayer Aquifer in the Po Plain (Northern Italy): Reactive Transport Modeling. Appl. Geochem. 2015, 63, 599–609. [Google Scholar] [CrossRef]
- Miola, A.; Bondesan, A.; Corain, L.; Favaretto, S.; Mozzi, P.; Piovan, S.; Sostizzo, I. Wetlands in the Venetian Po Plain (Northeastern Italy) during the Last Glacial Maximum: Interplay between Vegetation, Hydrology and Sedimentary Environment. Rev. Palaeobot. Palynol. 2006, 141, 53–81. [Google Scholar] [CrossRef]
- Rotiroti, M.; McArthur, J.; Fumagalli, L.; Stefania, G.A.; Sacchi, E.; Bonomi, T. Pollutant Sources in an Arsenic-Affected Multilayer Aquifer in the Po Plain of Italy: Implications for Drinking-Water Supply. Sci. Total Environ. 2017, 578, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Carraro, A.; Fabbri, P.; Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F. Arsenic Anomalies in Shallow Venetian Plain (Northeast Italy) Groundwater. Environ. Earth Sci 2013, 70, 3067–3084. [Google Scholar] [CrossRef]
- ARPAE. Valori di Fondo Naturale di Arsenico Negli Acquiferi Profondi di Pianura per Classificare lo Stato Chimico delle Acque Sotterranee; ARPAE: Casalecchio Di Reno, Italy, 2012. [Google Scholar]
Confined and Semi-Confined Aquifers | Phreatic Aquifers | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Total Obs | Missing Obs | Valid Obs | Min | Max | Mean | Std. Dev. | Total Obs | Missing Obs | Valid Obs | Min | Max | Mean | Std. Dev. | Kruskal–Wallis |
Hardness (mg/L) | 1428 | 19 | 1409 | 2 | 1503 | 274.6 | 164.4 | 2243 | 20 | 2223 | 13 | 4950 | 322.2 | 234.0 | <0.0001 * |
T (°C) | 1428 | 376 | 1052 | 8 | 31 | 15.2 | 1.7 | 2243 | 647 | 1596 | 6 | 26.3 | 15.2 | 2.2 | 0.767 |
pH | 1428 | 24 | 1404 | 6 | 9.1 | 7.5 | 0.3 | 2243 | 50 | 2193 | 5.5 | 8.7 | 7.3 | 0.4 | <0.0001 * |
Eh (mV) | 1428 | 1020 | 408 | −195 | 292 | 30.7 | 118.8 | 2243 | 1832 | 411 | −121 | 504 | 152.3 | 92.8 | <0.0001 * |
EC (μS/cm) | 1428 | 20 | 1408 | 91 | 6284 | 643.6 | 555.0 | 2243 | 31 | 2212 | 63 | 35,603 | 704.1 | 1464.3 | 0.001 * |
Ca (mg/L) | 1428 | 19 | 1409 | 1 | 276 | 70.5 | 42.7 | 2243 | 17 | 2226 | 7.8 | 450.1 | 90.3 | 44.4 | <0.0001 * |
Mg (mg/L) | 1428 | 20 | 1408 | 3.1 | 229 | 24.4 | 20.0 | 2243 | 18 | 2225 | 1 | 816 | 24.3 | 39.8 | 0.096 |
Na (mg/L) | 1428 | 19 | 1409 | 1 | 1253 | 47.7 | 98.8 | 2243 | 19 | 2224 | 0.5 | 8310.5 | 38.3 | 331.6 | <0.0001 * |
K (mg/L) | 1428 | 16 | 1412 | 0.1 | 95.1 | 2.2 | 3.7 | 2243 | 17 | 2226 | 0.1 | 423.1 | 5.5 | 22.9 | <0.0001 * |
HCO3− (mg/L) | 1428 | 69 | 1359 | 44 | 2385 | 350.3 | 217.9 | 2243 | 137 | 2106 | 23 | 1564 | 320.5 | 154.8 | 0.191 |
SO42− (mg/L) | 1428 | 36 | 1392 | 0.5 | 526 | 31.9 | 46.7 | 2243 | 34 | 2209 | 0.5 | 1888 | 52.5 | 89.0 | <0.0001 * |
Cl (mg/L) | 1428 | 24 | 1404 | 0.5 | 1870 | 45.8 | 149.0 | 2243 | 35 | 2208 | 0.5 | 14,362 | 63.9 | 608.0 | <0.0001 * |
PO43− (mg/L) | 1428 | 185 | 1243 | 0.001 | 3.188 | 0.1 | 0.3 | 2243 | 532 | 1711 | 0.001 | 22.9 | 0.1 | 0.7 | <0.0001 * |
NO3− (mg/L) | 1428 | 23 | 1405 | 0.01 | 166 | 9.3 | 15.7 | 2243 | 32 | 2211 | 0.01 | 190 | 22.5 | 21.0 | <0.0001 * |
NO2− (mg/L) | 1428 | 60 | 1368 | 0.1 | 3191 | 6.6 | 96.4 | 2243 | 100 | 2143 | 0.1 | 1085 | 8.0 | 43.7 | <0.0001 * |
NH4+ (mg/L) | 1428 | 20 | 1408 | 0.001 | 43.2 | 1.4 | 3.7 | 2243 | 31 | 2212 | 0.001 | 50.0 | 0.3 | 2.2 | <0.0001 * |
F (μg/L) | 1428 | 128 | 1300 | 1 | 3000 | 125.6 | 249.9 | 2243 | 395 | 1848 | 1 | 1064 | 40.9 | 94.4 | <0.0001 * |
Fe (μg/L) | 1428 | 31 | 1397 | 0.05 | 21,200 | 682.5 | 1803.0 | 2243 | 101 | 2142 | 0.05 | 20,100 | 277.1 | 1190.6 | <0.0001 * |
Mn (μg/L) | 1428 | 32 | 1396 | 0.001 | 2659 | 91.7 | 202.2 | 2243 | 98 | 2145 | 0.001 | 2863 | 74.0 | 229.8 | <0.0001 * |
As (μg/L) | 1428 | 363 | 1065 | 0.01 | 434 | 7.7 | 27.9 | 2243 | 715 | 1528 | 0.01 | 342 | 2.3 | 12.8 | <0.0001 * |
Ba (μg/L) | 1428 | 840 | 588 | 0.1 | 2536 | 285.7 | 307.0 | 2243 | 1653 | 590 | 0.1 | 1059 | 125.8 | 145.0 | <0.0001 * |
B (μg/L) | 1428 | 370 | 1058 | 0.001 | 2120 | 209.4 | 325.0 | 2243 | 698 | 1545 | 0.001 | 1965 | 82.3 | 175.6 | <0.0001 * |
Zn (μg/L) | 1428 | 37 | 1391 | 0.1 | 12,689 | 139.4 | 632.1 | 2243 | 160 | 2083 | 0.1 | 11,900 | 106.1 | 514.9 | 0.091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orecchia, C.; Giambastiani, B.M.S.; Greggio, N.; Campo, B.; Dinelli, E. Geochemical Characterization of Groundwater in the Confined and Unconfined Aquifers of the Northern Italy. Appl. Sci. 2022, 12, 7944. https://doi.org/10.3390/app12157944
Orecchia C, Giambastiani BMS, Greggio N, Campo B, Dinelli E. Geochemical Characterization of Groundwater in the Confined and Unconfined Aquifers of the Northern Italy. Applied Sciences. 2022; 12(15):7944. https://doi.org/10.3390/app12157944
Chicago/Turabian StyleOrecchia, Cristina, Beatrice M. S. Giambastiani, Nicolas Greggio, Bruno Campo, and Enrico Dinelli. 2022. "Geochemical Characterization of Groundwater in the Confined and Unconfined Aquifers of the Northern Italy" Applied Sciences 12, no. 15: 7944. https://doi.org/10.3390/app12157944
APA StyleOrecchia, C., Giambastiani, B. M. S., Greggio, N., Campo, B., & Dinelli, E. (2022). Geochemical Characterization of Groundwater in the Confined and Unconfined Aquifers of the Northern Italy. Applied Sciences, 12(15), 7944. https://doi.org/10.3390/app12157944