Using Blockchain to Protect 3D Printing from Unauthorized Model Tampering
Abstract
:1. Introduction
2. Design and Analysis
2.1. Choosing an Underlying Blockchain
2.2. “Fingerprints” of an STL File
3. Demonstration and Discussion
Listing 1: Code for maintaining a whitelist of multiple entities. |
contract threedpTrust { uint256 constant SIGNATURES = 5; address[] manager; string[] whiteHash; string[] fileHash; mapping(string => uint256) private signatureNum; mapping(string => bool) private hashExisted; mapping(string => bool) private hashIsWhite; mapping(string => mapping (address => bool)) private notVote; modifier onlyManager { require(msg.sender == manager[0] || msg.sender == manager[1] || msg.sender == manager[2] || msg.sender == manager[3] || msg.sender == manager[4]); _; } modifier notExisted(string memory _fileHash) { require(hashExisted[_fileHash] == false); _; } constructor( address _firstManager, address _secondManager, … ) { manager[0] = _firstManager; manager[1] = _secondManager; … } function uploadHash(string memory _fileHash) public notExisted(_fileHash) returns(bool) { fileHash.push(_fileHash); signatureNum[_fileHash] = 0; hashExisted[_fileHash] = true; hashIsWhite[_fileHash] = false; return true; } function signHash(string memory _fileHash) public onlyManager returns(bool) { require(notVote[_fileHash][msg.sender] == false, "You have already signed this file hash"); notVote[_fileHash][msg.sender] = true; if (signatureNum[_fileHash] == 5) { whiteHash.push(_fileHash); hashIsWhite[_fileHash] = true; } else { signatureNum[_fileHash] += 1; } return true; } function checkHash(string memory _fileHash) public view returns(bool) { return hashIsWhite[_fileHash]; } } |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booysen, G.J.; Van der Merwe, A.F.; De Beer, D.J. Additive manufacturing for sustainable custom-designed implants. S. Afr. J. Ind. Eng. 2019, 30, 21–31. [Google Scholar] [CrossRef]
- Bachhar, N.; Gudadhe, A.; Kumar, A.; Andrade, P.; Kumaraswamy, G. 3D printing of semicrystalline polypropylene: Towards eliminating warpage of printed objects. Bull. Mater. Sci. 2020, 43, 171. [Google Scholar] [CrossRef]
- Salmi, M. Additive manufacturing processes in medical applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Chen, T. 3D printing technologies for enhancing the sustainability of an aircraft manufacturing or MRO company—A multi-expert partial consensus-FAHP analysis. Int. J. Adv. Manuf. Technol. 2019, 105, 4171–4180. [Google Scholar] [CrossRef]
- Pervaiz, S.; Qureshi, T.A.; Kashwani, G.; Kannan, S. 3D printing of fiber-reinforced plastic composites using fused deposition modeling: A status review. Materials 2021, 14, 4520. [Google Scholar] [CrossRef]
- New Wohlers Report 2021 Finds 7.5% Growth in Additive Manufacturing Industry Despite Pandemic. Available online: https://wohlersassociates.com/press83.html (accessed on 21 November 2021).
- Security Alert: 3D Printing-Counterfeit High Security Bolt Seals. Available online: https://blog.gwccnet.com/blog/security-alert-3d-printing-counterfeit-high-security-bolt-seals (accessed on 21 November 2021).
- Shanghai Police Destroy a Criminal Gang that Manufactures and Sells Counterfeit Ultraman Toys, the Amount Involved Is More than 4 Million Yuan. Available online: http://lfxj.samr.gov.cn/article/yasf/202109/3640.html (accessed on 21 November 2021).
- Belikovetsky, S.; Yampolskiy, M.; Toh, J.; Gatlin, J.; Elovici, Y. Dr0wned—Cyber-physical attack with additive manufacturing. In Proceedings of the 11th {USENIX} Workshop on Offensive Technologies ({WOOT} 17) 2017, Vancouver, BC, Canada, 14–15 August 2017; Available online: https://www.usenix.org/system/files/conference/woot17/woot17-paper-belikovetsky.pdf (accessed on 21 November 2021).
- Abdallah, M.; Hijazi, A.; Graff, B.; Fouassier, J.; Rodeghiero, G.; Gualandi, A.; Dumur, F.; Cozzi, P.G.; Lalevée, J. Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis. Polym. Chem. 2019, 10, 872–884. [Google Scholar] [CrossRef]
- Qiu, W.; Zhu, J.; Dietliker, K.; Li, Z. Polymerizable oxime esters: An efficient photoinitiator with low migration ability for 3D printing to fabricate luminescent devices. ChemPhotoChem 2020, 4, 5296–5303. [Google Scholar] [CrossRef]
- Ts, A.; Qi, Z.A.; Tao, Z.B.; Xsa, C.; Jgl, D. Co-doping Mn 2+ /Cr 3+ in ZnGa 2 O 4 to fabricate chameleon-like phosphors for multi-mode dynamic anti-counterfeiting. Chem. Eng. J. 2021, 426, 131744. [Google Scholar]
- Eisenbarth, D.; Stoll, P.; Klahn, C.; Heinis, T.B.; Wegener, K. Unique coding for authentication and anti-counterfeiting by controlled and random process variation in L-PBF and L-DED. Addit. Manuf. 2020, 35, 101298. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Chen, X.; Shi, X. Research on watermark printing technology of STL model based on Menger curvature. In Proceedings of the 2021 4th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2021), Sanya, China, 29–31 January 2021; p. 12075. [Google Scholar]
- Yan, C.; Zhang, G.; Wang, A.; Liu, L.; Chang, C. Visible 3D-model watermarking algorithm for 3D-Printing based on bitmap fonts. Int. J. Netw. Secur. 2021, 23, 172–179. [Google Scholar]
- Cao, J.; Niu, Z.; Wang, A.; Liu, L. Reversible visible watermarking algorithm for 3D models. J. Netw. Intell. 2020, 5, 129–140. [Google Scholar]
- Gao, Y.; Wang, W.; Jin, Y.; Zhou, C.; Xu, W.; Jin, Z. ThermoTag: A hidden ID of 3D printers for fingerprinting and watermarking. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2805–2820. [Google Scholar] [CrossRef]
- Laftah, M.M. Watermarking of a 3D Model based on Wavelet Transform. Iraqi J. Sci. 2021, 62, 4999–5007. [Google Scholar] [CrossRef]
- Feng, X.; Li, L.; Wang, J.; Dong, K.; Liu, Y.; Yan, S. Research progress on copyright protection technology of 3D printing model. Chin. J. Image Graph. 2019, 24, 1028–1041. [Google Scholar]
- Kurpjuweit, S.; Schmidt, C.G.; Klöckner, M.; Wagner, S.M. Blockchain in additive manufacturing and its impact on supply chains. J. Bus. Logist. 2021, 42, 46–70. [Google Scholar] [CrossRef]
- Alkhader, W.; Alkaabi, N.; Salah, K.; Jayaraman, R.; Arshad, J.; OMAR, M. Blockchain-Based Traceability and Management for Additive Manufacturing. IEEE Access 2020, 8, 188363–188377. [Google Scholar] [CrossRef]
- Yang, D.; Long, C.; Xu, H.; Peng, S. A review on scalability of blockchain. In Proceedings of the 2020 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 12 March 2020; pp. 1–6. [Google Scholar]
- Grodzicka, H.; Kedziora, M.; Madeyski, L. Security and scalability in private permissionless blockchain: Problems and solutions leading to creating Consent-as-a-Service (CaaS) deployment. In Proceedings of the International Conference on Computational Collective Intelligence, Rhodes, Greece, 27 September 2021; pp. 278–289. [Google Scholar]
- Shahsavari, Y.; Zhang, K.; Talhi, C. A theoretical model for block propagation analysis in bitcoin network. IEEE Trans. Eng. Manag. 2020, 69, 1459–1476. [Google Scholar] [CrossRef]
- Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.; Lin, Q.; Ooi, B.C. Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The Netherlands, June 30–July 5 2019; pp. 123–140. [Google Scholar]
- Shevkar, R. Performance-based analysis of blockchain scalability metric. Tehnički Glasnik 2021, 15, 133–142. [Google Scholar]
- Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. Sok: Sharding on blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, Zurich, Switzerland, 21–23 October 2019; pp. 41–61. [Google Scholar]
- Zhou, Q. Boson Consensus: A Scalable Blockchain Consensus Algorithm; Quark Chain Foundation Ltd.: Singapore, 2019; pp. 1–18. [Google Scholar]
- Abdoun, N. Design, Implementation and Analysis of Keyed Hash Functions Based on Chaotic Maps and Neural Networks; Nantes: Nantes, France, 2019. [Google Scholar]
- Wang, B.; Li, S. Research of combining blockchain in the course reform of cryptography by experiential teaching. In Proceedings of the 2021 9th International Conference on Information and Education Technology (ICIET), Okayama, Japan, 27–29 March 2021; pp. 133–138. [Google Scholar]
- Zhai, S.; Yang, Y.; Li, J.; Qiu, C.; Zhao, J. Research on the Application of Cryptography on the Blockchain. J. Phys. Conf. Ser. 2019, 1168, 32077. [Google Scholar] [CrossRef]
- Cai, X.Q.; Deng, Y.; Zhang, L.; Shi, J.C.; Chen, Q.; Zhen, W.L.; Liu, Z.Q.; Long, Y.; Wang, K.; Li, C. The principle and core technology of blockchain. Chin. J. Comput. 2019, 42, 1–15. [Google Scholar]
- Mandolla, C.; Petruzzelli, A.M.; Percoco, G.; Urbinati, A. Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. Comput. Industry 2019, 109, 134–152. [Google Scholar] [CrossRef]
- 3DPTrust. Available online: http://www.3dptrust.com/home?s=%2Fhome (accessed on 24 January 2022).
- Bhardwaj, A.; Shah, S.B.H.; Shankar, A.; Alazab, M.; Kumar, M.; Gadekallu, T.R. Penetration testing framework for smart contract blockchain. Peer 2021, 14, 2635–2650. [Google Scholar] [CrossRef]
- Industrial Giant GE Eyes Blockchain in Fight Against 3D-Printing Fakes. Available online: https://www.coindesk.com/industrial-giant-ge-eyes-blockchain-in-fight-against-3d-printing-fakes/ (accessed on 21 November 2021).
- Moog and ST Aerospace to Collaborate on Industry’s First: Blockchain and 3D Printing-Enabled Total Digital Transaction. Available online: https://www.stengg.com/en/newsroom/news-releases/moog-and-st-aerospace-to-collaborate-on-industry-s-first-blockchain-and-3d-printing-enabled-total-digital-transaction/ (accessed on 21 November 2021).
Network | Transactions per Second | Characteristics | Types of Sharding |
---|---|---|---|
Zilliqa | 2488 TPS |
| Network sharding *; transaction sharding ** |
QuarkChain | ≥100,000 TPS |
| Network sharding; transaction sharding; state sharding *** |
Near Protocol | 1000 TPS |
| Network sharding; transaction sharding; state sharding |
Elrond | 10,000 TPS |
| Network sharding; transaction sharding; state sharding |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, Y.; Suo, S.; Wang, M.; Rao, W. Using Blockchain to Protect 3D Printing from Unauthorized Model Tampering. Appl. Sci. 2022, 12, 7947. https://doi.org/10.3390/app12157947
Wang Y, Yang Y, Suo S, Wang M, Rao W. Using Blockchain to Protect 3D Printing from Unauthorized Model Tampering. Applied Sciences. 2022; 12(15):7947. https://doi.org/10.3390/app12157947
Chicago/Turabian StyleWang, Yajing, Yaodong Yang, Shuaipeng Suo, Mingyuan Wang, and Weifeng Rao. 2022. "Using Blockchain to Protect 3D Printing from Unauthorized Model Tampering" Applied Sciences 12, no. 15: 7947. https://doi.org/10.3390/app12157947
APA StyleWang, Y., Yang, Y., Suo, S., Wang, M., & Rao, W. (2022). Using Blockchain to Protect 3D Printing from Unauthorized Model Tampering. Applied Sciences, 12(15), 7947. https://doi.org/10.3390/app12157947