New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes: Volume II
Author Contributions
Funding
Conflicts of Interest
References
- Červeňanská, Z.; Kotianová, J.; Važan, P.; Juhásová, B.; Juhás, M. Multi-Objective Optimization of Production Objectives ase don Surrogate Model. Appl. Sci. 2020, 10, 7870. [Google Scholar] [CrossRef]
- Sasiain, J.; Sanz, A.; Astorga, J.; Jacob, E. Towards Flexible Integration of 5G and IioT Technologies in Industry 4.0: A Practical Use Case. Appl. Sci. 2020, 10, 7670. [Google Scholar] [CrossRef]
- Ojstersek, R.; Buchmeister, B.; Vujica Herzog, N. Use of Data-Driven Simulation Modeling and Visual Computing Methods for Workplace Evaluation. Appl. Sci. 2020, 10, 7037. [Google Scholar] [CrossRef]
- Minchala, L.I.; Peralta, J.; Mata-Quevedo, P.; Rojas, J. An Approach to Industrial Automation based on Low-Cost Embedded Platforms and Open Software. Appl. Sci. 2020, 10, 4696. [Google Scholar] [CrossRef]
- Ougaabal, K.; Zacharewicz, G.; Ducq, Y.; Tazi, S. Visual Workflow Process Modeling and Simulation Approach ase don Non-Functional Properties of Resources. Appl. Sci. 2020, 10, 4664. [Google Scholar] [CrossRef]
- Garrido-Labrador, J.L.; Puente-Gabarri, D.; Ramírez-Sanz, J.M.; Ayala-Dulanto, D.; Maudes, J. Using Ensembles for Accurate Modelling of Manufacturing Processes in an IoT Data-Acquisition Solution. Appl. Sci. 2020, 10, 4606. [Google Scholar] [CrossRef]
- Redondo, R.; Herrero, Á.; Corchado, E.; Sedano, J. A Decision-Making Tool ase don Exploratory Visualization for the Automotive Industry. Appl. Sci. 2020, 10, 4355. [Google Scholar] [CrossRef]
- Erasmus, J.; Vanderfeesten, I.; Traganos, K.; Keulen, R.; Grefen, P. The HORSE Project: The Application of Business Process Management for Flexibility in Smart Manufacturing. Appl. Sci. 2020, 10, 4145. [Google Scholar] [CrossRef]
- Serras, M.; García-Sardiña, L.; Simões, B.; Álvarez, H.; Arambarri, J. Dialogue Enhanced Extended Reality: Interactive System for the Operator 4.0. Appl. Sci. 2020, 10, 3960. [Google Scholar] [CrossRef]
- Simoes, B.; de Amicis, R.; Barandiaran, I.; Posada, J. X-reality system architecture for industry 4.0 processes. Multimodal Technol. Interact. 2018, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Simoes, B.; de Amicis, R.; Barandiaran, I.; Posada, J. Cross reality to enhance worker cognition in industrial assembly operations. Int. J. Adv. Manuf. Technol. 2019, 105, 3965–3978. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.K.; Lee, H.; Kim, J.Y.; Kim, S. Data Augmentation Method by Applying Color Perturbation of Inverse PSNR and Geometric Transformations for Object Recognition ase don Deep Learning. Appl. Sci. 2020, 10, 3755. [Google Scholar] [CrossRef]
- Mejia-Parra, D.; Arbelaiz, A.; Ruiz-Salguero, O.; Lalinde-Pulido, J.; Moreno, A.; Posada, J. Fast Simulation of Laser Heating Processes on Thin Metal Plates with FFT Using CPU/GPU Hardware. Appl. Sci. 2020, 10, 3281. [Google Scholar] [CrossRef]
- Mejia, D.; Moreno, A.; Arbelaiz, A.; Posada, J.; Ruiz-Salguero, O.; Chopitea, R. Accelerated Thermal Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser Cutting. J. Manuf. Sci. Eng. 2018, 140, 31006. [Google Scholar] [CrossRef]
- Chen, S.; Fang, S.; Tang, R. An ANN-Based Approach for Real-Time Scheduling in Cloud Manufacturing. Appl. Sci. 2020, 10, 2491. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-N.; Liu, T.-K.; Chen, Y.J. Human-Machine Interaction: Adapted Safety Assistance in Mentality Using Hidden Markov Chain and Petri Net. Appl. Sci. 2019, 9, 5066. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.V.; Huynh, B.H.; Akhtar, H. Ant Colony Optimization Algorithm for Maintenance, Repair and Overhaul Scheduling Optimization in the Context of Industrie 4.0. Appl. Sci. 2019, 9, 4815. [Google Scholar] [CrossRef] [Green Version]
- Stachowiak, A.; Adamczak, M.; Hadas, L.; Domański, R.; Cyplik, P. Knowledge Absorption Capacity as a Factor for Increasing Logistics 4.0 Maturity. Appl. Sci. 2019, 9, 5365. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Cortadi, A.; Irigoien, I.; Boto, F.; Sierra, B.; Rodriguez, G. Predictive Maintenance on the Machining Process and Machine Tool. Appl. Sci. 2020, 10, 224. [Google Scholar] [CrossRef] [Green Version]
- Ottogalli, K.; Rosquete, D.; Amundarain, A.; Aguinaga, I.; Borro, D. Flexible Framework to Model Industry 4.0 Processes for Virtual Simulators. Appl. Sci. 2019, 9, 4983. [Google Scholar] [CrossRef] [Green Version]
- Prinsloo, J.; Sinha, S.; von Solms, B. A Review of Industry 4.0 Manufacturing Process Security Risks. Appl. Sci. 2019, 9, 5105. [Google Scholar] [CrossRef] [Green Version]
- De Lacalle, L.N.L.; Posada, J. Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes. Appl. Sci. 2019, 9, 4323. [Google Scholar] [CrossRef] [Green Version]
- Del Olmo, A.; de Lacalle, L.L.; de Pissón, G.M.; Pérez-Salinas, C.; Ealo, J.A.; Sastoque, L.; Fernandes, M.H. Tool wear monitoring of high-speed broaching process with carbide tools to reduce production errors. Mech. Syst. Signal Process. 2022, 172, 109003. [Google Scholar] [CrossRef]
- Zambon, I.; Egidi, G.; Rinaldi, F.; Cividino, S. Applied Research Towards Industry 4.0: Opportunities for SMEs. Processes 2019, 7, 344. [Google Scholar] [CrossRef] [Green Version]
- Papakostas, N.; Constantinescu, C.; Mourtzis, D. Novel Industry 4.0 Technologies and Applications. Appl. Sci. 2020, 10, 6498. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López de Lacalle, L.N.; Posada, J. New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes: Volume II. Appl. Sci. 2022, 12, 7952. https://doi.org/10.3390/app12157952
López de Lacalle LN, Posada J. New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes: Volume II. Applied Sciences. 2022; 12(15):7952. https://doi.org/10.3390/app12157952
Chicago/Turabian StyleLópez de Lacalle, Luis Norberto, and Jorge Posada. 2022. "New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes: Volume II" Applied Sciences 12, no. 15: 7952. https://doi.org/10.3390/app12157952
APA StyleLópez de Lacalle, L. N., & Posada, J. (2022). New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes: Volume II. Applied Sciences, 12(15), 7952. https://doi.org/10.3390/app12157952