Trajectory Tracking Control Method Based on Adaptive Higher Order Sliding Mode
Abstract
:1. Introduction
2. Design of Adaptive High-Order Sliding Mode Trajectory Tracking Controller
2.1. Establishing Trajectory Tracking Control Model
2.2. Establishing the Optimal Nominal Trajectory
2.3. Adaptive Higher-Order Sliding Mode Algorithms
- When
- If the value of the time derivative of and is sufficiently small, a higher-order sliding mode surface is established; that is, , and the exponential term will approach 1. The controller is transformed into the linear controller , thereby reducing the control chattering.
- If the value of the time derivative of and is sufficiently small, a higher-order sliding mode surface is established; that is, , and the exponential term will approach 1. The controller is transformed into the linear controller , thereby reducing the control chattering.
- Parameters and are used to adjust the accuracy of the controller.
2.4. Design of the Tracking Controller Based on the Adaptive Super-Twisting Algorithm
2.5. Active Disturbance Rejection Control and Linear Quadratic Regulator Controller Design
3. Case Analysis
3.1. Model Verification and Method Comparsion
3.2. Analysis of Simulation Results
3.3. Ways to Improve Accuracy of ADRC and LQR
4. Conclusions
- This paper establishes the nominal trajectory that takes into account the flight time and the rate of change in the control quantity by using the Gaussian pseudospectral method and nonlinear programming;
- Based on the sliding mode control disturbance rejection, the high-order sliding mode control introduced in this paper reduces the chattering problem of the control variables to a greater extent than in the ADRC method;
- By introducing the adaptive control method, this paper ensures that the controller design maintains a good control effect in the presence of initial state interference.
- The control variables and state variables for the trajectory tracking control method, based on the adaptive high-order sliding mode, can effectively converge to the nominal trajectory, and the terminal error is small.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bao, W. Present Situation and Development Tendency of Aerospace Control Techniques. Acta Autom. Sin. 2013, 39, 697–702. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, H. An Optimal Reentry Maneuver guidance Law Applying to Attack the Ground Fixed Target. J. Astronaut. 1994, 15, 1–7. [Google Scholar]
- Zhao, H.; Chen, K. Velocity Control of Maneuvering Reentry Vehicle. J. Natl. Univ. Def. Technol. 1993, 15, 11–17. [Google Scholar]
- Hu, Z.; Cao, Y.; Cai, H. Variable structure guidance law of reentry maneuvering warhead with terminal angular constraint. Syst. Eng. Electron. 2009, 32, 393–398. [Google Scholar]
- Kumar, S.R.; Rao, S.; Ghose, D. Nonsingular Terminal Sliding Mode Guidance with Impact Angle Constraints. J. Guid. Control Dyn. 2014, 37, 1114–1130. [Google Scholar] [CrossRef]
- Lu, P.; Doman, D.B.; Schierman, J.D. Adaptive Terminal Guidance for Hypervelocity Impact in Specified Direction. J. Guid. Control Dyn. 2006, 29, 269–278. [Google Scholar] [CrossRef]
- Dukeman, G.A. Profile-following entry guidance using linear quadratic regulator theory. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, USA, 5 August 2002. [Google Scholar]
- Yogi, S.C.; Tripathi, V.K.; Behera, L. Adaptive Integral Sliding Mode Control Using Fully Connected Recurrent Neural Network for Position and Attitude Control of Quadrotor. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5595–5609. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Vázquez, A.J.; Fernández-Anaya, G.; Sánchez-Torres, J.D. Fractional integro-differential sliding mode control of a class of distributed-order nonlinear systems. J. Appl. Math. Comput. 2021, 1–18. [Google Scholar] [CrossRef]
- Harl, N.; Balakrishnan, S.N. Impact time and angle guidance with sliding mode control. IEEE Trans. Control Syst. Technol. 2011, 20, 1436–1449. [Google Scholar] [CrossRef]
- Ming, C.; Wang, X.; Sun, R. A novel non-singular terminal sliding mode control-based integrated missile guidance and control with impact angle constraint. Aerosp. Sci. Technol. 2019, 94, 105368. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Wang, L.; Zhang, K. A Guidance law based on fast adaptive super-twisting algorithm. J. Beijing Univ. Aeronaut. Astronaut. 2019, 45, 1388–1397. [Google Scholar]
- Li, M.; Chen, Y.; Zhang, Y.; Liu, Y. Adaptive sliding-mode tracking control of networked control systems with false data injection attacks. Inf. Sci. 2022, 585, 194–208. [Google Scholar] [CrossRef]
- An, K.; Guo, Z.Y.; Huang, W.; Xu, X. Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle. J. Zhejiang Univ.-Sci. A 2022, 23, 188–207. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, W.; Guan, J.; Qu, Y.; Liang, Z. Trajectory Tracking Method Designing based on Adaptive Fast Convergence Terminal Sliding Mode Control. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 569, p. 042020. [Google Scholar]
- Wang, N.; Karimi, H.R.; Li, H.; Su, S. Accurate trajectory tracking of disturbed surface vehicles: A finite-time control approach. Proceedings of the IEEE/ASME Trans. Mechatron. 2019, 24, 1064–1074. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J. Sliding-mode guidance for simultaneous control of impact time and angle. J. Guid. Control Dyn. 2019, 42, 394–401. [Google Scholar] [CrossRef]
- Zhang, D.; Lei, H.; Wu, L. A trajectory tracking guidance law based on LQR. J. Solid Rocket Technol. 2014, 37, 763–768. [Google Scholar]
- Yuan, F. The Application of Optimum Process Theory in Calculation of Optimal Trajectory for Fighter. Flight Dyn. 2000, 18, 50–53. [Google Scholar]
- Liu, X. Fuel-Optimal Rocket Landing with Aerodynamic Controls. J. Guid. Control Dyn. 2019, 42, 65–77. [Google Scholar] [CrossRef]
- Lu, P.; Sun, H.; Tsai, B. Closed-Loop Endoatmospheric Ascent Guidance. J. Guid. Control Dyn. 2003, 26, 283–294. [Google Scholar] [CrossRef]
- Yu, S.; Yu, X.; Shirinzadeh, B. Continuous Finite-Time Control for Robotic manipulators with Terminal Sliding Modes. Automatica 2005, 41, 1957–1964. [Google Scholar] [CrossRef]
- Zakaria, B.; Noureddine, G.; Atallah, B.; Carlos, O. Algebraic observer-based output-feedback controller design for a PEM fuel cell air-supply subsystem. IET Renew. Power Gener. 2018, 12, 1714–1721. [Google Scholar] [CrossRef] [Green Version]
- Tahoumi, E.; Plestan, F.; Ghanes, M.; Barbot, J. Robust and energy efficient control schemes based on higher order sliding mode. In Proceedings of the 18th European Control Conference, Naples, Italy, 25–28 June 2019. [Google Scholar]
- Zhang, C.; Tahoumi, E.; Gutierrez, S.; Plestan, F.; DeLeón-Morales, J. Adaptive robust control of floating offshore wind turbine based on sliding mode. In Proceedings of the IEEE 58th Conference on Decision and Control, Nice, France, 11–13 December 2019. [Google Scholar]
- Han, J. Auto-disturbances-rejection Controller and Its Applications. Control Decis. 1998, 13, 19–23. [Google Scholar]
- Han, J. From PID Technique to Active Disturbances Rejection Control Technique. Control Eng. China 2002, 9, 13–18. [Google Scholar]
- Gao, Z. Scaling and Bandwidth-Parameterization Based Controller Tuning. In Proceedings of the American Control Conference, Minneapolis, MN, USA, 4–6 June 2003. [Google Scholar]
- Wang, Y.; Xing, K.; Ma, J.; Zhang, W. Implementation and Design of ARDC for the Linear Inverted Pendulum. Control Eng. China 2017, 24, 711–715. [Google Scholar]
- Wu, L.; Han, J. Active disturbance rejection controller scheme for the linear inverted pendulum. Control Theory Appl. 2004, 21, 665–669. [Google Scholar]
- Wang, Y.; Zhang, W.; Yu, L. A Linear Active Disturbance Rejection Control Approach to Position Synchronization Control for Networked Interconnected Motion System. IEEE Trans. Control Netw. Syst. 2020, 7, 1746–1756. [Google Scholar] [CrossRef]
Parameters | |
---|---|
2 | |
3 | |
4 |
Terminal State | AHSTC | LQR | ADRC |
---|---|---|---|
y coordinate/m | 4.9789 | −14.2031 | −0.82315 |
Trajectory inclination θ/° | 0.0443 | 0.0262 | 0.0995 |
Terminal State | AHSTC | LQR | ADRC |
---|---|---|---|
y coordinate/m | −2.8481 | 5.1634 | −0.75889 |
Trajectory inclination θ/° | −0.0057 | −0.0046 | 0.1101 |
Terminal State | AHSTC | LQR | ADRC |
---|---|---|---|
y coordinate/m | 4.3235 | −9.1456 | 3.6223 |
Trajectory inclination θ/° | 0.0403 | 0.01858 | 1.4914 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Meng, Y.; You, J.; Zhang, J.; Wang, Y.; Zhang, C. Trajectory Tracking Control Method Based on Adaptive Higher Order Sliding Mode. Appl. Sci. 2022, 12, 7955. https://doi.org/10.3390/app12167955
He J, Meng Y, You J, Zhang J, Wang Y, Zhang C. Trajectory Tracking Control Method Based on Adaptive Higher Order Sliding Mode. Applied Sciences. 2022; 12(16):7955. https://doi.org/10.3390/app12167955
Chicago/Turabian StyleHe, Jingang, Yuanjie Meng, Jun You, Jin Zhang, Yuanzhuo Wang, and Cheng Zhang. 2022. "Trajectory Tracking Control Method Based on Adaptive Higher Order Sliding Mode" Applied Sciences 12, no. 16: 7955. https://doi.org/10.3390/app12167955
APA StyleHe, J., Meng, Y., You, J., Zhang, J., Wang, Y., & Zhang, C. (2022). Trajectory Tracking Control Method Based on Adaptive Higher Order Sliding Mode. Applied Sciences, 12(16), 7955. https://doi.org/10.3390/app12167955