Technology Commercialization Activation Model Using Imagification of Variables
Abstract
:1. Introduction
2. Related Work
2.1. Technology Commercialization
2.2. Technology Transfer Using Patent Analysis
2.3. DeepInsight: Imagification of Variables
3. Proposed Model
3.1. Data Description and Preprocessing
3.2. Technology Commercialization Activation Model
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitchell, W.; Singh, K. Survival Of Businesses Using Collaborative Relationships To Commercialize Complex Goods. Strateg. Manag. J. 1996, 17, 169–195. [Google Scholar] [CrossRef]
- Branscomb, L.M.; Auerswald, P.E.; Evans, D.L.; Bond, P.J.; Bement, A.L. Between Invention and Innovation an Analysis of Funding for Early-Stage Technology Development; United States Department of Commerce: Washington, DC, USA, 2002.
- Markman, G.D.; Siegel, D.S.; Wright, M. Research and Technology Commercialization. J. Manag. Stud. 2008, 45, 1401–1423. [Google Scholar] [CrossRef]
- Hwang, I. Analyzing Key Determinants of National R&D Technology Commercialization and Its Implications. 2021. Available online: https://www.kistep.re.kr/boardDownload.es?bid=0031&list_no=42465&seq=1 (accessed on 7 July 2022).
- Aram, J.D.; Lynn, L.H.; Reddy, N.M. Institutional Relationships and Technology Commercialization: Limitations of Market Based Policy. Res. Policy 1992, 21, 409–421. [Google Scholar] [CrossRef]
- Hwang, H.-R.; Kim, K.-K.; Jeong, H.-K. A Study on the Technology Commercialization Policy for Technology-Based SMEs: Case on Daedeok Innopolis. Asia-Pac. J. Bus. Ventur. Entrep. 2013, 8, 39–52. [Google Scholar] [CrossRef]
- Bozeman, B. Technology Transfer and Public Policy: A Review of Research and Theory. Res. Policy 2000, 29, 627–655. [Google Scholar] [CrossRef]
- Wahab, S.A.; Rose, R.C.; Osman, S.I.W. Defining the Concepts of Technology and Technology Transfer: A Literature Analysis. Int. Bus. Res. 2011, 5, 61–71. [Google Scholar] [CrossRef]
- About Technology Transfers. Available online: https://eng.kitech.re.kr/support/page1-1.php (accessed on 7 July 2022).
- Rogers, E.M.; Takegami, S.; Yin, J. Lessons Learned about Technology Transfer. Technovation 2001, 21, 253–261. [Google Scholar] [CrossRef]
- Arora, A.; Gambardella, A. Ideas for Rent: An Overview of Markets for Technology. Ind. Corp. Chang. 2010, 19, 775–803. [Google Scholar] [CrossRef]
- Koo, Y.; Cho, K. The Relationship between Patents, Technology Transfer and Desorptive Capacity in Korean Universities. Sustainability 2021, 13, 5253. [Google Scholar] [CrossRef]
- Lee, Y.-J. Strategies for the Successful Technology Transfer from Public Research Institutes in Korea. J. Technol. Innov. 2008, 16, 141–163. [Google Scholar]
- Kaya, H.; Yazgan, M.E. Probability Forecasts of Macroaggregates in the Turkish Economy. Emerg. Mark. Finance Trade 2014, 50, 214–229. [Google Scholar] [CrossRef]
- Baek, D.H.; Sul, W.; Hong, K.P.; Kim, H. A Technology Valuation Model to Support Technology Transfer Negotiations. R D Manag. 2007, 37, 123–138. [Google Scholar] [CrossRef]
- Kim, M.-S.; Lee, C.-H.; Choi, J.-H.; Jang, Y.-J.; Lee, J.-H.; Lee, J.; Sung, T.-E.; Choi, J.-H.; Jang, Y.-J.; Lee, J.-H.; et al. A Study on Intelligent Technology Valuation System: Introduction of KIBO Patent Appraisal System II. Sustainability 2021, 13, 12666. [Google Scholar] [CrossRef]
- Trappey, A.J.C.; Trappey, C.V.; Wu, C.Y.; Lin, C.W. A Patent Quality Analysis for Innovative Technology and Product Development. Adv. Eng. Inform. 2012, 26, 26–34. [Google Scholar] [CrossRef]
- Park, Y.; Lee, S.; Lee, S. Patent Analysis for Promoting Technology Transfer in Multi-Technology Industries: The Korean Aerospace Industry Case. J. Technol. Transf. 2012, 37, 355–374. [Google Scholar] [CrossRef]
- Park, H.; Yoon, J.; Kim, K. Using Function-Based Patent Analysis to Identify Potential Application Areas of Technology for Technology Transfer. Expert Syst. Appl. 2013, 40, 5260–5265. [Google Scholar] [CrossRef]
- Choi, J.; Jang, D.; Jun, S.; Park, S. A Predictive Model of Technology Transfer Using Patent Analysis. Sustainability 2015, 7, 16175–16195. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Park, S.; Jang, D. A Technology Valuation Model Using Quantitative Patent Analysis: A Case Study of Technology Transfer in Big Data Marketing. Emerg. Mark. Finance Trade 2015, 51, 963–974. [Google Scholar] [CrossRef]
- Lee, J.; Kang, J.H.; Jun, S.; Lim, H.; Jang, D.; Park, S. Ensemble Modeling for Sustainable Technology Transfer. Sustainability 2018, 10, 2278. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Vans, E.; Shigemizu, D.; Boroevich, K.A.; Tsunoda, T. DeepInsight: A Methodology to Transform a Non-Image Data to an Image for Convolution Neural Network Architecture. Sci. Rep. 2019, 9, 11399. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J. Technology Commercialization, Incubator and Venture Capital, and New Venture Performance. J. Bus. Res. 2009, 62, 93–103. [Google Scholar] [CrossRef]
- Jung, M.; Lee, Y.-b.; Lee, H. Classifying and Prioritizing the Success and Failure Factors of Technology Commercialization of Public R&D in South Korea: Using Classification Tree Analysis. J. Technol. Transf. 2015, 40, 877–898. [Google Scholar] [CrossRef]
- Effects, K.; Lee, M.-K.; Lee, S.; Kim, M.; Kim, J.-K.; Cho, K.-T. Effects of Technology Commercialization Proactiveness on Commercialization Success: The Case of ETRI in Korea. Sustainability 2022, 14, 7056. [Google Scholar] [CrossRef]
- Kirchberger, M.A.; Pohl, L. Technology Commercialization: A Literature Review of Success Factors and Antecedents across Different Contexts. J. Technol. Transf. 2016, 41, 1077–1112. [Google Scholar] [CrossRef]
- Anokhin, S.; Wincent, J.; Frishammar, J. A Conceptual Framework for Misfit Technology Commercialization. Technol. Forecast. Soc. Chang. 2011, 78, 1060–1071. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Cherepovitsyn, A.Y.; Ilinova, A.A. Technology Commercialization in Entrepreneurial Universities: The US and Russian Experience. J. Technol. Transf. 2015, 41, 1135–1147. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Tao, L. Patent Mining. ACM Sigkdd Explor. Newsl. 2015, 16, 1–19. [Google Scholar] [CrossRef]
- Park, S.; Jun, S. Patent Analysis Using Bayesian Data Analysis and Network Modeling. Appl. Sci. 2022, 12, 1423. [Google Scholar] [CrossRef]
- Zhu, Y.; Brettin, T.; Xia, F.; Partin, A.; Shukla, M.; Yoo, H.; Evrard, Y.A.; Doroshow, J.H.; Stevens, R.L. Converting Tabular Data into Images for Deep Learning with Convolutional Neural Networks. Sci. Rep. 2021, 11, 11325. [Google Scholar] [CrossRef]
- Furuya, S.; Sanaee, A.; Georgescu, S.; Townsend, J.; Rasmussen, B.; Chow, P.; Snelling, D.; Goto, M. Imagification Technology and Deep Learning Accelerating Defect Detection in Non-Destructive Testing for Wind Turbine Blades. Fujitsu Sci. Tech. J. 2019, 55, 23–29. [Google Scholar]
- Naz, M.; Shah, J.H.; Khan, M.A.; Sharif, M.; Raza, M.; Damaševičius, R. From ECG Signals to Images: A Transformation Based Approach for Deep Learning. PeerJ Comput. Sci. 2021, 7, e386. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Hassan, H.M. A Deep Learning Based Traffic Crash Severity Prediction Framework. Accid. Anal. Prev. 2021, 154, 106090. [Google Scholar] [CrossRef] [PubMed]
- Andresini, G.; Appice, A.; de Rose, L.; Malerba, D. GAN Augmentation to Deal with Imbalance in Imaging-Based Intrusion Detection. Future Gener. Comput. Syst. 2021, 123, 108–127. [Google Scholar] [CrossRef]
- van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. JMLR 2008, 9, 2579–2605. [Google Scholar]
- Keywert. Available online: https://www.keywert.com/ (accessed on 7 July 2022).
- Sharma, A. A Survey On Different Text Clustering Techniques For Patent Analysis. IJERT 2012, 1, IJERTV1IS9098. [Google Scholar] [CrossRef]
- Sentence-Transformers/Pretrained_models.Md at Master UKPLab/Sentence-Transformers GitHub. Available online: https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained_models.md (accessed on 7 July 2022).
- Sklearn.Metrics.Calinski_harabasz_score—Scikit-Learn 1.1.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html (accessed on 7 July 2022).
- Sklearn.Metrics.Davies_bouldin_score—Scikit-Learn 1.1.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html (accessed on 7 July 2022).
- Sklearn.Metrics.Silhouette_score—Scikit-Learn 1.1.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html (accessed on 7 July 2022).
- Sklearn.Cluster.KMeans—Scikit-Learn 1.1.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html (accessed on 7 July 2022).
- Image Preprocessing—Keras Documentation. Available online: https://keras.io/ko/preprocessing/image/ (accessed on 7 July 2022).
Technological Field | DB | Application Period | Status | Number of Patents (Number Transferred) |
---|---|---|---|---|
Artificial Intelligence (AI) | USPTO | 1989–2016 | Registered | 15,193 (4137) |
Indicator | Description | Measurable Value Information |
---|---|---|
app_to_regi (days) | Time required from application to registration | Utility value |
all_claim_num | Number of claims | Rights |
applicant_num | Number of applicants | Utility |
inventor_num | Number of inventors | Sustainable development |
current_owner_num | Number of current rights owners | Market impact |
IPC_num | Number of IPC codes | Technology scalability |
b_citation_num | Number of backward citations | Technology impact |
f_citation_num | Number of forward citations | Technology impact |
fam_nation_num | Number of family nations | Market impact |
fam_doc_num | Number of family patents | Market impact |
alone_app_yn | Sole application status (dummy) | Utility value |
stand_patent_yn | Standard patent status (dummy) | Technology impact |
lit_yn | Litigation status (dummy) | Utility value |
Model | Description | Number of Dimensions | Size |
---|---|---|---|
all-MINIlm-L12-v2 | Trained on a large, diverse dataset of over one billion training pairs | 384 | 120 MB |
Measure | Description |
---|---|
CH (Calinski-Harabasz index) | Calculated as the ratio of the sum of dispersion between clusters and the dispersion within clusters for all clusters. The higher the value, the better the performance [41]. |
DB (Davies-Bouldin index) | Calculated as the average similarity between each cluster and its most similar cluster, where the similarity is the ratio of the distance within the cluster to the distance between clusters. The lower the value, the better the performance [42]. |
SS (Silhouette score) | A measure of how similar an object is to its own cluster compared to other clusters. The higher the value, the better the performance [43]. |
SSE (Sum of squared errors) | The sum of the squared differences between each observation and its group’s mean. SSE is used with elbow plots to find the optimal number of clusters [44]. |
Parameter | Value |
---|---|
Dimensionality reduction method | tSNE |
Pixel size | 120 × 120 |
Channel | 3 (RGB) |
Data | Number of Patents (Size: Height × Width × Channel) | Number of Labels (0:Non-Transferred, 1:Transferred) | |
---|---|---|---|
Non-image data | Training data | 12,154 | 0:8845 1:3309 |
Test data | 3039 | 0:2211 1:828 | |
Image data | Training data | 12,154 (120 × 120 × 3) | 0:8845 1:3309 |
Test data | 3039 (120 × 120 × 3) | 0:2211 1:828 |
K | Measure | |||
---|---|---|---|---|
CH | DB | SS | SSE | |
2 | 782.671 | 4.315 | 0.047 | 183,495.098 |
3 | 676.904 | 3.042 | 0.058 | 177,159.764 |
4 | 635.130 | 3.258 | 0.063 | 171,663.809 |
5 | 580.094 | 3.149 | 0.064 | 167,377.781 |
6 | 516.671 | 3.587 | 0.044 | 164,899.573 |
7 | 473.446 | 3.640 | 0.043 | 162,545.410 |
8 | 438.377 | 3.609 | 0.045 | 160,513.242 |
9 | 409.199 | 3.638 | 0.046 | 158,727.356 |
Cluster | Top-Frequency Words | Elementary Technology |
---|---|---|
0 | Signal, Sound, Speech | Auditory intelligence |
1 | Image, Detect, Motion | Visual intelligence |
2 | Language, Translate, Generate | Language intelligence |
3 | Device, Control, Circuit | AI semiconductor |
4 | Assist, Person, Digit | Intelligent agent |
Model | Parameters |
---|---|
Logistic regression (LR) | L2 Penalty |
K-Nearest neighbor (KNN) | K = 3, Distance = Minkowski |
Decision tree (DT) | Criterion = Gini |
Random forest (RF) | Criterion = Gini, # of features = sqrt |
AdaBoost (AB) | Criterion = Gini, # of features = sqrt |
Convolutional neural network (CNN) | Layers = 3, activation function = relu/softmax, Optimizer = Adam, Epochs = 50 |
Data Type | Measure | Model | |||||
---|---|---|---|---|---|---|---|
LR | KNN | DT | RF | AB | CNN | ||
Non-image data | Accuracy | 0.73 | 0.66 | 0.66 | 0.76 | 0.74 | - |
Precision | 0.63 | 0.53 | 0.57 | 0.7 | 0.75 | ||
Recall | 0.52 | 0.52 | 0.58 | 0.61 | 0.54 | ||
F1-score | 0.47 | 0.52 | 0.57 | 0.62 | 0.5 | ||
Image data | Accuracy | 0.73 | 0.7 | 0.66 | 0.77 | 0.74 | 0.75 |
Precision | 0.63 | 0.61 | 0.58 | 0.73 | 0.75 | 0.68 | |
Recall | 0.52 | 0.59 | 0.58 | 0.61 | 0.54 | 0.62 | |
F1-score | 0.47 | 0.59 | 0.58 | 0.62 | 0.5 | 0.63 |
Training Data Label | Original Proportion in Dataset (%) | Proportion after Data Augmentation (%) |
---|---|---|
0: Non-transferred | 8845 (72.77%) | 8845 (50%) |
1: Transferred | 3309 (27.23%) | 8845 (50%) |
Technique | Measure | Model | ||||
---|---|---|---|---|---|---|
LR | KNN | DT | RF | AB | ||
SMOTE | Accuracy | 0.61 | 0.63 | 0.65 | 0.73 | 0.67 |
Precision | 0.58 | 0.59 | 0.58 | 0.65 | 0.59 | |
Recall | 0.6 | 0.6 | 0.59 | 0.63 | 0.59 | |
F1-score | 0.57 | 0.58 | 0.59 | 0.63 | 0.59 | |
RS | Accuracy | 0.62 | 0.63 | 0.66 | 0.75 | 0.66 |
Precision | 0.58 | 0.59 | 0.57 | 0.68 | 0.6 | |
Recall | 0.6 | 0.6 | 0.57 | 0.63 | 0.61 | |
F1-score | 0.58 | 0.58 | 0.57 | 0.64 | 0.6 |
Image Data Generator Parameters | CNN | |
---|---|---|
Measure | Value | |
Horizontal flip = True | Accuracy | 0.76 |
Vertical flip = True | Precision | 0.7 |
Rotation range = 0.45 | Recall | 0.6 |
Zoom range = 0.2 | F1-score | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Park, S.; Kang, J. Technology Commercialization Activation Model Using Imagification of Variables. Appl. Sci. 2022, 12, 7994. https://doi.org/10.3390/app12167994
Kim Y, Park S, Kang J. Technology Commercialization Activation Model Using Imagification of Variables. Applied Sciences. 2022; 12(16):7994. https://doi.org/10.3390/app12167994
Chicago/Turabian StyleKim, Youngho, Sangsung Park, and Jiho Kang. 2022. "Technology Commercialization Activation Model Using Imagification of Variables" Applied Sciences 12, no. 16: 7994. https://doi.org/10.3390/app12167994
APA StyleKim, Y., Park, S., & Kang, J. (2022). Technology Commercialization Activation Model Using Imagification of Variables. Applied Sciences, 12(16), 7994. https://doi.org/10.3390/app12167994