Revalorizing a Pyrolytic Char Residue from Post-Consumer Plastics into Activated Carbon for the Adsorption of Lead in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of the Adsorbents from Pyrolysis Char and Characterization of the Solids
2.3. Adsorption Tests and Behavior of the Samples in Water
3. Results and Discussions
3.1. Characterization of the Plastic Pyrolysis Char after Activation
3.2. Stability and Pb Adsorption of the Activated Pyrolysis Plastic Char in Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe Plastics—The Facts. 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 11 April 2022).
- Martín-Lara, M.A.; Godoy, V.; Quesada, L.; Lozano, E.J.; Calero, M. Environmental status of marine plastic pollution in Spain. Mar. Pollut. Bull. 2021, 170, 112677. [Google Scholar] [CrossRef]
- OECD Global Plastics Outlook. Available online: https://www.oecd.org/environment/plastics/ (accessed on 10 May 2022).
- Miandad, R.; Rehan, M.; Nizami, A.-S.; Abou, M.; Barakat, E.-F.; Ismail, I.M.; Miandad, R.; El-Fetouh Barakat, M.A.; Rehan, Á.M.; Nizami, A.-S. The Energy and Value-Added Products from Pyrolysis of Waste Plastics. In Recycling of Solid Waste for Biofuels and Bio-Chemicals; Springer: Singapore, 2016; pp. 333–355. [Google Scholar]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials 2021, 14, 2586. [Google Scholar] [CrossRef] [PubMed]
- Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A.; Ilyas, R.A. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci. Total Environ. 2022, 803, 149911. [Google Scholar] [CrossRef] [PubMed]
- Martín-Lara, M.; Piñar, A.; Ligero, A.; Blázquez, G.; Calero, M. Characterization and Use of Char Produced from Pyrolysis of Post-Consumer Mixed Plastic Waste. Water 2021, 13, 1188. [Google Scholar] [CrossRef]
- Bernardo, M.; Mendes, S.; Lapa, N.; Gonçalves, M.; Mendes, B.; Pinto, F.; Lopes, H.; Fonseca, I. Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis. J. Colloid Interface Sci. 2013, 409, 158–165. [Google Scholar] [CrossRef]
- Singh, E.; Kumar, A.; Mishra, R.; You, S.; Singh, L.; Kumar, S.; Kumar, R. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour. Technol. 2021, 320, 124278. [Google Scholar] [CrossRef]
- Maneerung, T.; Liew, J.; Dai, Y.; Kawi, S.; Chong, C.; Wang, C.-H. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresour. Technol. 2016, 200, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Avilés, A.; Peñas-Garzón, M.; Belver, C.; Rodriguez, J.J.; Bedia, J. Equilibrium, kinetics and breakthrough curves of acetaminophen adsorption onto activated carbons from microwave-assisted FeCl3-activation of lignin. Sep. Purif. Technol. 2021, 278, 119654. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Alam, S.N. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Murillo, R.; Navarro, M.V.; López, J.M.; García, T.; Callén, M.S.; Aylón, E.; Mastral, A.M. Activation of pyrolytic tire char with CO2: Kinetic study. J. Anal. Appl. Pyrolysis 2004, 71, 945–957. [Google Scholar] [CrossRef]
- Bazargan, A.; Hui, C.W.; McKay, G. Porous Carbons from Plastic Waste. In Advances in Polymer Science; Springer LLC: New York, NY, USA, 2013; Volume 266, pp. 1–26. [Google Scholar]
- Almazán-Almazán, M.C.; Perez-Mendoza, M.; López-Domingo, F.J.; Fernández-Morales, I.; Domingo-García, M.; López-Garzón, F.J. A new method to obtain microporous carbons from PET: Characterisation by adsorption and molecular simulation. Microporous Mesoporous Mater. 2007, 106, 219–228. [Google Scholar] [CrossRef]
- Schweitzer, L.; Noblet, J. Water Contamination and Pollution. In Green Chemistry: An Inclusive Approach; Elsevier: Amsterdam, The Netherlands, 2018; pp. 261–290. ISBN 9780128095492. [Google Scholar]
- Mushak, P. Lead in the Human Environment: Fate and Transport Processes. In Trace Metals and Other Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2011; Volume 10, pp. 91–115. [Google Scholar]
- Kumar, V.; Dwivedi, S.K.; Oh, S. A critical review on lead removal from industrial wastewater: Recent advances and future outlook. J. Water Process Eng. 2022, 45, 102518. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies. J. Hazard. Mater. 2005, 125, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Momčilović, M.; Purenović, M.; Bojić, A.; Zarubica, A.; Ranđelović, M. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 2011, 276, 53–59. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Wen, N.; Wei, D.; Zhang, Y. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica. Sep. Purif. Technol. 2021, 265, 118341. [Google Scholar] [CrossRef]
- Baker, H.M.; Massadeh, A.M.; Younes, H. Natural Jordanian zeolite: Removal of heavy metal ions from water samples using column and batch methods. Environ. Monit. Assess. 2008, 157, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Mohammadabadi, S.I.; Javanbakht, V. Fabrication of dual cross-linked spherical treated waste biomass/alginate adsorbent and its potential for efficient removal of lead ions from aqueous solutions. Ind. Crop. Prod. 2021, 168, 113575. [Google Scholar] [CrossRef]
- Far, H.S.; Hasanzadeh, M.; Najafi, M.; Nezhad, T.R.M.; Rabbani, M. Efficient Removal of Pb(II) and Co(II) Ions from Aqueous Solution with a Chromium-Based Metal–Organic Framework/Activated Carbon Composites. Ind. Eng. Chem. Res. 2021, 60, 4332–4341. [Google Scholar] [CrossRef]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef] [PubMed]
- Thabede, P.M.; Shooto, N.D.; Naidoo, E.B. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds. South Afr. J. Chem. Eng. 2020, 33, 39–50. [Google Scholar] [CrossRef]
- Ahmad, Z.; Gao, B.; Mosa, A.; Yu, H.; Yin, X.; Bashir, A.; Ghoveisi, H.; Wang, S. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 2018, 180, 437–449. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Blewitt, J.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 2019, 26, 37228–37241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anirudhan, T.S.; Sreekumari, S.S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011, 23, 1989–1998. [Google Scholar] [CrossRef]
- Bohli, T.; Ouederni, A.; Fiol, N.; Villaescusa, I. Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones. Desalin. Water Treat. 2015, 53, 1082–1088. [Google Scholar] [CrossRef]
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264, 128455. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Ganjali, M.R.; Nayak, A.; Bhushan, B.; Agarwal, S. Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chem. Eng. J. 2012, 197, 330–342. [Google Scholar] [CrossRef]
- Nieto-Márquez, A.; Pinedo-Flores, A.; Picasso, G.; Atanes, E.; Kou, R.S. Selective adsorption of Pb2+, Cr3+ and Cd2+ mixtures on activated carbons prepared from waste tires. J. Environ. Chem. Eng. 2017, 5, 1060–1067. [Google Scholar] [CrossRef]
- Bernardo, M.; Lapa, N.; Gonçalves, M.; Mendes, B.; Pinto, F.; Fonseca, I.M.F.L.; Lopes, H. Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. J. Hazard. Mater. 2012, 219–220, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Lian, F.; Xing, B.; Zhu, L. Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. J. Colloid Interface Sci. 2011, 360, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Kaur, B.; Gupta, R.K.; Bhunia, H. Chemically activated nanoporous carbon adsorbents from waste plastic for CO2 capture: Breakthrough adsorption study. Microporous Mesoporous Mater. 2019, 282, 146–158. [Google Scholar] [CrossRef]
- Yuan, X.; Lee, J.G.; Yun, H.; Deng, S.; Kim, Y.J.; Lee, J.E.; Kwak, S.K.; Lee, K.B. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2. Chem. Eng. J. 2020, 397, 125350. [Google Scholar] [CrossRef]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.-P. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 2014, 197, 316–323. [Google Scholar] [CrossRef]
- Lillo-Ródenas, M.A.; Cazorla-Amorós, D.; Linares-Solano, A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 2003, 41, 267–275. [Google Scholar] [CrossRef]
- Hussin, F.; Aroua, M.K.; Kassim, M.A.; Ali, U.F. Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review. Energies 2021, 14, 8421. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Ojha, D.; Ray, T.; Vinu, R. Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J. Therm. Anal. Calorim. 2014, 117, 1441–1451. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, S.; Brown, R.C.; Kelkar, A.; Bai, X. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 2015, 156, 40–46. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems. Renew. Sustain. Energy Rev. 2009, 13, 2495–2504. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions. J. Energy Inst. 2020, 93, 1020–1035. [Google Scholar] [CrossRef]
- Li, C.; Ataei, F.; Atashi, F.; Hu, X.; Gholizadeh, M. Catalytic pyrolysis of polyethylene terephthalate over zeolite catalyst: Characteristics of coke and the products. Int. J. Energy Res. 2021, 45, 19028–19042. [Google Scholar] [CrossRef]
- Prunier, J.; Maurice, L.; Perez, E.; Gigault, J.; Wickmann, A.-C.P.; Davranche, M.; Ter Halle, A. Trace metals in polyethylene debris from the North Atlantic subtropical gyre. Environ. Pollut. 2019, 245, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Filella, M. Hazardous metal additives in plastics and their environmental impacts. Environ. Int. 2021, 156, 106622. [Google Scholar] [CrossRef]
- McKeen, L.W. Introduction to Plastics and Polymers. In Permeability Properties of Plastics and Elastomers; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 21–40. ISBN 978-0-323-50859-9. [Google Scholar]
- Lee, S.-Y.; Park, S.-J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Weinell, C.E.; Dam-Johansen, K. Dissolution rate measurements of sea water soluble pigments for antifouling paints: ZnO. Prog. Org. Coat. 2006, 56, 327–337. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y. Distribution of Pb(II) species in aqueous solutions. J. Colloid Interface Sci. 2003, 268, 266–269. [Google Scholar] [CrossRef]
- Su, X.; Chen, Y.; Li, Y.; Li, J.; Song, W.; Li, X.; Yan, L. Enhanced adsorption of aqueous Pb(II) and Cu(II) by biochar loaded with layered double hydroxide: Crucial role of mineral precipitation. J. Mol. Liq. 2022, 357, 1198–1206.e12. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490. [Google Scholar] [CrossRef]
- Sparks, D.L. Sorption Phenomena on Soils. In Environmental Soil Chemistry, 2nd ed.; Academic Press: London, UK, 2003; ISBN 978-0-12-656446-4. [Google Scholar]
- Al-Ghouti, M.A.; Da’Ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Vieira, O.; Ribeiro, R.S.; de Tuesta, J.L.D.; Gomes, H.T.; Silva, A.M. A systematic literature review on the conversion of plastic wastes into valuable 2D graphene-based materials. Chem. Eng. J. 2022, 428, 131399. [Google Scholar] [CrossRef]
- Wijesekara, D.A.; Sargent, P.; Ennis, C.J.; Hughes, D. Prospects of using chars derived from mixed post waste plastic pyrolysis in civil engineering applications. J. Clean. Prod. 2021, 317, 128212. [Google Scholar] [CrossRef]
- Mendoza-Carrasco, R.; Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C.; Gómez-Serrano, V. Preparation of high-quality activated carbon from polyethyleneterephthalate (PET) bottle waste. Its use in the removal of pollutants in aqueous solution. J. Environ. Manag. 2016, 181, 522–535. [Google Scholar] [CrossRef]
- Kumari, M.; Chaudhary, G.R.; Chaudhary, S.; Umar, A. Transformation of solid plastic waste to activated carbon fibres for wastewater treatment. Chemosphere 2022, 294, 133692. [Google Scholar] [CrossRef]
- Ilyas, M.; Ahmad, W.; Khan, H. Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater. Water Sci. Technol. 2021, 84, 609–631. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | SMP (m2·g−1) | SMP/SBET (%) | VT (cm3·g−1) | VMP (cm3·g−1) | VMP/VT (%) |
---|---|---|---|---|---|---|
C | 15 | 1 | 5.4 | 0.025 | - | - |
SC | 19 | 18 | 92.2 | 0.040 | 0.036 | 90.0 |
SC-N2 | 45 | 6 | 12.6 | 0.082 | 0.003 | 3.0 |
SC-CO2 | 68 | 18 | 26.9 | 0.094 | 0.008 | 9.2 |
SC-NaOH | 247 | 185 | 74.9 | 0.217 | 0.084 | 38.9 |
SC-KOH | 487 | 414 | 85.0 | 0.300 | 0.180 | 60.0 |
Element | C | SC | SC-N2 | SC-CO2 | SC-NaOH | SC-KOH |
---|---|---|---|---|---|---|
Li | 14 | 16 | 29 | 28 | 10 | 8 |
Ti | 43,249 | 59,395 | 55,978 | 106,635 | 48,744 | 49,696 |
V | 17 | 18 | 26 | 37 | 13 | 66 |
Cr | 281 | 555 | 749 | 1221 | 453 | 1457 |
Mn | 220 | 174 | 341 | 663 | 348 | 701 |
Co | 8 | 11 | 8 | 39 | 8 | 14 |
Ni | 192 | 318 | 231 | 1152 | 269 | 462 |
Cu | 275 | 302 | 350 | 1095 | 163 | 173 |
Zn | 2331 | 1791 | 303 | 29,109 | 5126 | 134 |
Ga | 42 | 78 | 134 | 35 | 59 | 45 |
Se | 0 | 0 | 0 | 1 | 0 | 0 |
Rb | 17 | 18 | 27 | 18 | 6 | 17 |
Sr | 383 | 204 | 236 | 145 | 400 | 254 |
Mo | 13 | 22 | 23 | 143 | 12 | 13 |
Cd | 1 | 1 | 0 | 0 | 0 | 0 |
Sn | 78 | 63 | 49 | 120 | 52 | 44 |
Sb | 182 | 2492 | 2369 | 3230 | 2430 | 8832 |
Ba | 928 | 1786 | 3012 | 683 | 1282 | 826 |
W | 10 | 124 | 14 | 48 | 39 | 18 |
Hg | 0 | 1 | 0 | 1 | 0 | 0 |
Pb | 457 | 487 | 132 | 453 | 189 | 36 |
Sample | qe (mg·g−1) | Ci (mg·L−1) | |||||
---|---|---|---|---|---|---|---|
10 | 20 | 50 | 100 | 200 | 500 | ||
C | Experimental | 18.78 | 34.00 | 82.56 | 163.2 | 248.8 | 348.0 |
Corrected | 13.95 | 27.02 | 82.56 | 163.2 | 248.8 | 348.0 | |
SC | Experimental | 0.602 | 2.801 | 11.41 | 21.61 | 44.80 | 94.05 |
Corrected | 0.602 | 2.801 | 11.41 | 21.61 | 44.80 | 94.05 | |
SC-N2 | Experimental | 15.64 | 36.56 | 73.60 | 117.2 | 124.1 | 154.0 |
Corrected | 0.537 | 1.427 | 16.92 | 117.2 | 124.1 | 154.0 | |
SC-CO2 | Experimental | 19.26 | 34.42 | 85.88 | 171.5 | 247.6 | 294.0 |
Corrected | 0.709 | 1.298 | 3.758 | 22.03 | 243.2 | 294.0 | |
SC-NaOH | Experimental | 9.001 | 31.38 | 85.60 | 170.3 | 357.6 | 862.4 |
Corrected | 0.373 | 1.129 | 3.859 | 31.19 | 94.64 | 315.8 | |
SC-KOH | Experimental | 20.32 | 33.72 | 98.98 | 193.4 | 371.8 | 701.0 |
Corrected | 0.011 | 0.215 | 2.187 | 35.30 | 82.51 | 701.0 |
Sample | Model Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Freundlich | Langmuir | Sips | ||||||||
KF | nF | R2 | qL | KL | R2 | qS | KS | nS | R2 | |
C | 97.45 | 0.227 | 0.975 | 318.8 | 0.175 | 0.938 | 594.8 | 8.40 × 10−3 | 0.371 | 0.979 |
SC | 0.501 | 0.888 | 0.997 | 424.6 | 7.77 × 10−4 | 0.998 | 220.8 | 2.11 × 10−3 | 1.171 | 0.999 |
SC-N2 | 66.81 | 0.146 | 0.984 | 133.6 | 1.514 | 0.836 | 259.9 | 1.26 × 10−2 | 0.240 | 0.992 |
SC-CO2 | 139.7 | 0.137 | 0.951 | 271.1 | 1.148 | 0.869 | 334.0 | 0.448 | 0.400 | 0.999 |
SC-NaOH | 221.2 | 1.201 | 0.999 | N/A | N/A | |||||
SC-KOH | 109.9 | 0.388 | 0.939 | 767.7 | 8.74 × 10−2 | 0.989 | 746.7 | 9.70 × 10−2 | 1.107 | 0.990 |
Type of Precursor | Raw Material | Activating Agent | Lead Adsorption Capacity (mg·g−1) | Refs. |
---|---|---|---|---|
Biomass | Black cumin seeds | H2SO4 | 18.0 | [27] |
Banana peel | --- | 247.1 | [28] | |
Apricot stone | H2SO4 | 22.9 | [29] | |
Potato peel | H3PO4 + KOH | 9.3 | [30] | |
Coconut buttons | H2SO4 + steam | 92.7 | [31] | |
Soybean oil cake | K2CO3 | 476.2 | [31] | |
Olive stone | H3PO4 | 148.8 | [32] | |
Tire waste | KOH | 322.5 | [33] | |
Physical (agent not specified) | 327.9 | [34] | ||
KOH | 49.7 | [35] | ||
Biomass and plastic waste | Bamboo, sugarcane, and neem PET, PE, and PVC | --- | NA | [10] |
Biomass, tire, and plastic waste | Forestry pine, used tires, and plastic wastes | --- | 1.87 | [9] |
Mixture of non-recyclable plastics | Polypropylene, polystyrene, and polyethylene | KOH | 747 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solís, R.R.; Martín-Lara, M.Á.; Ligero, A.; Balbís, J.; Blázquez, G.; Calero, M. Revalorizing a Pyrolytic Char Residue from Post-Consumer Plastics into Activated Carbon for the Adsorption of Lead in Water. Appl. Sci. 2022, 12, 8032. https://doi.org/10.3390/app12168032
Solís RR, Martín-Lara MÁ, Ligero A, Balbís J, Blázquez G, Calero M. Revalorizing a Pyrolytic Char Residue from Post-Consumer Plastics into Activated Carbon for the Adsorption of Lead in Water. Applied Sciences. 2022; 12(16):8032. https://doi.org/10.3390/app12168032
Chicago/Turabian StyleSolís, Rafael R., María Ángeles Martín-Lara, Ana Ligero, Josefa Balbís, Gabriel Blázquez, and Mónica Calero. 2022. "Revalorizing a Pyrolytic Char Residue from Post-Consumer Plastics into Activated Carbon for the Adsorption of Lead in Water" Applied Sciences 12, no. 16: 8032. https://doi.org/10.3390/app12168032
APA StyleSolís, R. R., Martín-Lara, M. Á., Ligero, A., Balbís, J., Blázquez, G., & Calero, M. (2022). Revalorizing a Pyrolytic Char Residue from Post-Consumer Plastics into Activated Carbon for the Adsorption of Lead in Water. Applied Sciences, 12(16), 8032. https://doi.org/10.3390/app12168032