Development and Evaluation of Elaeagnus rhamnoides (L.) A. Nelson Oil-Loaded Nanostructured Lipid Carrier for Improved Skin Hydration
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Blank NLCs
2.3. Development of SBO-Loaded NLCs (SBO-NLCs)
2.4. Particle Size, Polydispersity Index (PDI), and Zeta Potential (ZP)
2.5. Entrapment Efficiency (EE)
2.6. Differential Scanning Calorimetry (DSC)
2.7. Microscopy Analysis
2.8. In Vitro Occlusion Effect
2.9. In Vitro Drug Release Studies
2.10. Determination of the In Vitro Skin Permeation of SBO-NLCs
2.11. Statistical Analysis
3. Results
3.1. Development of SBO-NLCs
3.2. Size of SBO-NLCs
3.3. Polydispersity Index (PDI) of the SBO-NLCs
3.4. Zeta Potential (ZP) of SBO-NLCs
3.5. Entrapment Efficiency (EE) of the SBO-NLCs
3.6. Differential Scanning Calorimetry Analysis
3.7. TEM Analysis
3.8. In Vitro Occlusion Effect of the SBO-NLCs
3.9. In Vitro Release
3.10. In Vitro Skin Permeation of the SBO-NLCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawlings, A.V.; Harding, C.R. Moisturization and skin barrier function. Dermatol. Ther. 2004, 17, 43–48. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purnamawati, S.; Indrastuti, N.; Danarti, R.; Saefudin, T. The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clin. Med. Res. 2017, 15, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loden, M. The clinical benefit of moisturizers. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, P.; Siamidi, A.; Varvaresou, A.; Vlachou, M. Skin Care Formulations and Lipid Carriers as Skin Moisturizing Agents. Cosmetics 2021, 8, 89. [Google Scholar] [CrossRef]
- Müller, R.H.; Petersen, R.D.; Hommoss, A.; Pardeike, J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 2007, 59, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Pardeike, J.; Schwabe, K.; Müller, R.H. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int. J. Pharm. 2010, 396, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Li, N.; Su, C.; Wang, Y.; Zhao, X.; Yang, L.; Li, Y.; Zhang, B.; Chen, J.; Ma, X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv. 2020, 10, 44654–44671. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Guo, X.; Li, T.; Fu, X.; Liu, R.H. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophae rhamnoides L.) berries. Food Chem. 2017, 221, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Wang, D.; Ma, X.; Chen, W.; Guo, S.; Guan, H. Effects of total flavonoids of sea buckthorn (Hippophae rhamnoides L.) on cytotoxicity of NK92-MI cells. Int. J. Immunopathol. Pharmacol. 2017, 30, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Zheng, L.; Zhao, C.; Jin, Q.; Wang, X. Chemical composition and antioxidant capacity of extracts from the whole berry, pulp and seed of Hippophae rhamnoides ssp. yunnanensis. Nat. Prod. Res. 2019, 33, 3596–3600. [Google Scholar] [CrossRef]
- Hou, D.D.; Di, Z.H.; Qi, R.Q.; Wang, H.X.; Zheng, S.; Hong, Y.X.; Guo, H.; Chen, H.D.; Gao, X.H. Sea Buckthorn (Hippophae rhamnoides L.) Oil Improves Atopic Dermatitis-Like Skin Lesions via Inhibition of NF-κB and STAT1 Activation. Skin Pharmacol. Physiol. 2017, 30, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Kim, J.E.; Choi, S.I.; Lee, H.R.; Lee, Y.J.; Jang, M.J.; Son, H.J.; Lee, H.S.; Oh, C.H.; Kim, B.H.; et al. UV radiation-induced skin aging in hairless mice is effectively prevented by oral intake of sea buckthorn (Hippophae rhamnoides L.) fruit blend for 6 weeks through MMP suppression and increase of SOD activity. Int. J. Mol. Med. 2012, 30, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Gęgotek, A.; Jastrząb, A.; Jarocka-Karpowicz, I.; Muszyńska, M.; Skrzydlewska, E. The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells. Antioxidants 2018, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Woraharn, S.; Lailerd, N.; Sivamaruthi, B.S.; Wangcharoen, W.; Peerajan, S.; Sirisattha, S.; Chaiyasut, C. Development of fermented Hericium erinaceus juice with high content of L-glutamine and L-glutamic acid. Int. J. Food Sci. Technol. 2015, 50, 2104–2112. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Pengkumsri, N.; Sirilun, S.; Peerajan, S.; Khongtan, S.; Sivamaruthi, B.S. Assessment of changes in the content of anthocyanins, phenolic acids, and antioxidant property of Saccharomyces cerevisiae mediated fermented black rice bran. AMB Express 2017, 7, 114. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Atul Anand, P.; Praveen Digambar Chaudhari, P.D. Development and Evaluation of Nanostructured Lipid Carrier (NLC) Based Topical Delivery of an Anti-Inflammatory Drug. J. Pharm. Res. 2013, 7, 677–685. [Google Scholar]
- Moghddam, S.M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box-Behnken design approach. Artif. Cells Nanomed. Biotechnol. 2017, 45, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Trakoolthong, P.; Ditthawuttikul, N.; Sivamaruthi, B.S.; Sirilun, S.; Rungseevijitprapa, W.; Peerajan, S.; Chaiyasut, C. Antioxidant and 5α-Reductase Inhibitory Activity of Momordica charantia Extract, and Development and Characterization of Microemulsion. Appl. Sci. 2022, 12, 4410. [Google Scholar] [CrossRef]
- Cirri, M.; Maestrini, L.; Maestrelli, F.; Mennini, N.; Mura, P.; Ghelardini, C.; Di Cesare Mannelli, L. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv. 2018, 25, 1910–1921. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadi, S.; Karimi, M.; Nasirizadeh, S.; Hatamipour, M.; Shiva Golmohammadzadeh, S.; Jaafari, M.R. Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J. Drug Deliv. Sci. Technol. 2021, 62, 102352. [Google Scholar] [CrossRef]
- Anantaworasakul, P.; Chaiyana, W.; Michniak-Kohn, B.B.; Rungseevijitprapa, W.; Ampasavate, C. Enhanced Transdermal Deliv-ery of Concentrated Capsaicin from Chili Extract-Loaded Lipid Nanoparticles with Reduced Skin Irritation. Pharmaceutics 2020, 12, 463. [Google Scholar] [CrossRef]
- Krambeck, K.; Silva, V.; Silva, R.; Fernandes, C.; Cagide, F.; Borges, F.; Santos, D.; Otero-Espinar, F.; Lobo, J.M.S.; Amaral, M.H. Design and characterization of Nanostructured lipid carriers (NLC) and Nanostructured lipid carrier-based hydrogels containing Passiflora edulis seeds oil. Int. J. Pharm. 2021, 600, 120444. [Google Scholar] [CrossRef]
- Gaba, B.; Fazil, M.; Khan, S.; Ali, A.; Baboota, S.; Ali, J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull. Fac. Pharm. Cairo Univ. 2015, 53, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Balkrishna, A.; Sakat, S.S.; Joshi, K.; Joshi, K.; Sharma, V.; Ranjan, R.; Bhattacharya, K.; Varshney, A. Cytokines Driven Anti-Inflammatory and Anti-Psoriasis Like Efficacies of Nutraceutical Sea Buckthorn (Hippophae rhamnoides) Oil. Front. Pharmacol. 2019, 10, 1186. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Wang, C.; Sun, B.; Qi, C. Understanding the role of extracts from sea buckthorn seed residues in anti-melanogenesis properties on B16F10 melanoma cells. Food Funct. 2018, 9, 5402–5416. [Google Scholar] [CrossRef]
- Apostolou, M.; Assi, A.; Fatokun, A.A.; Khan, I. The Effects of Solid and Liquid Lipids on the Physicochemical Properties of Nanostructured Lipid Carriers. J. Pharm. Sci. 2021, 110, 2859–2872. [Google Scholar] [CrossRef]
- Pinto, M.F.; Moura, C.C.; Nunes, C.; Segundo, M.A.; Lima, S.A.C.; Reis, S. A new topical formulation for psoriasis: Development of methotrexate-loaded nanostructured lipid carriers. Int. J. Pharm. 2014, 477, 519–526. [Google Scholar] [CrossRef]
- Pinto, F.; de Barros, D.P.C.; Fonseca, L.P. Design of multifunctional nanostructured lipid carriers enriched with α-tocopherol using vegetable oils. Ind. Crops Prod. 2018, 118, 149–159. [Google Scholar] [CrossRef]
- Saedi, A.; Rostamizadeh, K.; Parsad, M.; Dalalia, N.; Ahmadie, N. Preparation and characterization of nanostructured lipid carriers as drug delivery system: Influence of liquid lipid types on loading and cytotoxicity. Chem. Phys. Lipids 2018, 216, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Tichota, D.M.; Silva, A.C.; Sousa Lobo, J.M.; Amaral, M.H. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int. J. Nanomed. 2014, 9, 3855–3864. [Google Scholar]
- Jia, L.J.; Zhang, D.R.; Li, Z.Y.; Feng, F.F.; Wang, Y.C.; Dai, W.T.; Duan, C.X.; Zhang, Q. Preparation and characterization of silybin-loaded nanostructured lipid carriers. Drug Deliv. 2010, 17, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Okonogi, S.; Riangjanapatee, P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int. J. Pharm. 2015, 478, 726–735. [Google Scholar] [CrossRef]
- Bang, K.H.; Na, Y.G.; Huh, H.W. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane. Cancers 2019, 11, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Gan, Y.; Gan, L.; Nie, S.; Pan, W. PEGylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin: An efficient carrier with enhanced antitumour effects against lung cancer. J. Pharm. Pharmacol. 2010, 60, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Shao, J.; Tan, B. Targeted lung cancer therapy: Preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int. J. Nanomed. 2015, 10, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience. J. Biomol. Tech. 2010, 21, 167–193. [Google Scholar]
- Ghate, V.K.; Lewis, S.A.; Prabhakara Prabhu, P.; Dubey, A.; Patel, N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur. J. Pharm. Biopharm. 2016, 108, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Cho, H.I.; Lee, H.Y.; Lee, S.H.; Choi, Y.W. Enhanced Occlusiveness of Nanostructured Lipid Carrier (NLC)-based Carbogel as a Skin Moisturizing Vehicle. J. Pharm. Investig. 2010, 40, 373–378. [Google Scholar]
- Loo, C.h.; Basri, M.; Ismail, R.; Lau, H.; Tejo, B.; Kanthimathi, M.; Hassan, H.; Choo, Y. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int. J. Nanomed. 2013, 8, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Muller, R.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 2004, 278, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, D.W.; Ren, L.X.; Zhao, X.L.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release 2006, 114, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bawazeer, S.; El-Telbany, D.F.A.; Al-Sawahli, M.M.; Zayed, G.; Keed, A.A.A.; Abdelaziz, A.E.; Abdel-Naby, D.H. Effect of nanostructured lipid carriers on transdermal delivery of tenoxicam in irradiated rats. Drug Deliv. 2020, 27, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ge, Z. Nanostructured Lipid Carriers Improve Skin Permeation and Chemical Stability of Idebenone. AAPS PharmSciTech. 2012, 13, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhou, L.; Yuan, L.; Zhang, Z.H.; Liu, X.; Wu, Q. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int. J. Nanomed. 2012, 7, 3023–3032. [Google Scholar]
STD | Wax (%) | Surfactant (%) | PEG400 in Surfactant (%) |
---|---|---|---|
1 | 2.50 | 2.50 | 10.00 |
2 | 7.50 | 2.50 | 10.00 |
3 | 2.50 | 7.50 | 10.00 |
4 | 7.50 | 7.50 | 10.00 |
5 | 2.50 | 2.50 | 30.00 |
6 | 7.50 | 2.50 | 30.00 |
7 | 2.50 | 7.50 | 30.00 |
8 | 7.50 | 7.50 | 30.00 |
9 | 0.79 | 5.00 | 20.00 |
10 | 9.20 | 5.00 | 20.00 |
11 | 5.00 | 0.79 | 20.00 |
12 | 5.00 | 9.20 | 20.00 |
13 | 5.00 | 5.00 | 3.18 |
14 | 5.00 | 5.00 | 36.81 |
15 | 5.00 | 5.00 | 20.00 |
16 | 5.00 | 5.00 | 20.00 |
17 | 5.00 | 5.00 | 20.00 |
STD | Size | Polydispersity Index | Zeta Potential | Entrapment Efficiency | ||||
---|---|---|---|---|---|---|---|---|
Actual | Predicted | Actual | Predicted | Actual | Predicted | Actual | Predicted | |
1 | 144.40 | 156.09 | 0.16 | 0.18 | −27.88 | −29.77 | 51.07 | 50.74 |
2 | 214.57 | 225.22 | 0.26 | 0.26 | −26.03 | −28.85 | 89.21 | 88.63 |
3 | 134.25 | 138.61 | 0.37 | 0.37 | −30.67 | −33.31 | 69.68 | 69.59 |
4 | 158.13 | 178.25 | 0.33 | 0.34 | −34.03 | −35.98 | 38.25 | 38.21 |
5 | 156.13 | 160.60 | 0.14 * | 0.25 | −17.73 | −19.46 | 85.25 | 84.69 |
6 | 226.37 | 229.73 | 0.32 | 0.33 | −17.75 | −18.55 | 30.42 | 30.22 |
7 | 105.27 | 119.20 | 0.26 | 0.27 | −20.60 | −21.45 | 84.56 | 84.45 |
8 | 162.80 | 158.84 | 0.25 | 0.24 | −22.57 | −24.12 | 50.47 | 50.41 |
9 | 112.53 | 99.84 | 0.29 | 0.26 | −16.33 | −17.07 | 52.31 | 52.61 |
10 | 201.47 | 191.31 | 0.32 | 0.30 | −36.33 | −37.07 | 58.93 | 59.27 |
11 | 235.57 | 221.78 | 0.23 | 0.24 | −24.03 | −21.45 | 55.00 | 55.66 |
12 | 163.80 | 147.47 | 0.31 | 0.32 | −31.57 | −29.12 | 55.30 | 55.27 |
13 | 217.90 | 190.89 | 0.33 | 0.29 | −36.87 | −36.39 | 78.63 | 79.07 |
14 | 188.10 | 178.35 | 0.30 | 0.27 | −15.63 | −17.75 | 57.08 | 57.40 |
15 | 198.43 | 184.62 | 0.27 | 0.28 | −33.80 | −27.07 | 90.88 | 82.76 |
16 | 167.23 | 184.62 | 0.26 * | 0.28 | −33.06 * | −27.07 | 76.75 | 82.76 |
17 | 163.10 | 184.62 | 0.26 | 0.28 | −32.63 | −27.07 | 81.42 | 82.76 |
Responses | Models | Model (p-Value) | Lack of Fit (p-Value) | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|---|---|---|
Size | Reduced quadratic | 0.0010 | 0.6268 | 0.8551 | 0.7681 | 0.5924 | 10.9504 |
PDI | Reduced 2FI | 0.0017 | 0.1280 | 0.8487 | 0.7646 | 0.5934 | 12.0536 |
ZP | Reduced cubic | 0.0085 | 0.1503 | 0.8505 | 0.7196 | 0.5654 | 7.1890 |
EE | Reduced cubic | 0.0019 | 0.9703 | 0.9902 | 0.9609 | 0.9587 | 19.9901 |
Terms | Estimated Parameters | |||||||
---|---|---|---|---|---|---|---|---|
Size | p-Value | PDI | p-Value | ZP | p-Value | EE * | p-Value | |
%Wax (A) | 27.1940 | 0.0003 | 0.0131 | 0.1083 | −5.9460 | 0.0070 | 0.0154 | 0.2426 |
%Surfactant (B) | −22.0925 | 0.0013 | 0.0246 | 0.0083 | −2.2804 | 0.0646 | −0.0009 | 0.9063 |
%PEG400 in Surfactant (C) | −3.7271 | 0.4733 | −0.0071 | 0.3566 | 5.5408 | 0.0008 | −0.0414 | 0.0212 |
%Wax × %Surfactant (A × B) | −7.3729 | 0.2856 | −0.0271 | 0.0240 | −0.8950 | 0.5380 | −0.0349 | 0.0210 |
%Wax × %PEG400 (A × C) | −0.0817 | 0.0010 | ||||||
%Surfactant × %PEG400 (B × C) | −5.9812 | 0.3816 | −0.0441 | 0.0017 | 0.3883 | 0.7872 | 0.0561 | 0.0040 |
%Wax × %Wax (A2) | −13.8050 | 0.0225 | −0.0604 | 0.0016 | ||||
%Surfactant × %Surfactant (B2) | 0.6302 | 0.5890 | −0.0615 | 0.0015 | ||||
%PEG400 × %PEG400 (C2) | −0.0316 | 0.0166 | ||||||
%Wax × %Surfactant × %PEG400 (ABC) | 0.0908 | 0.0007 | ||||||
%Wax × %Surfactant × %Surfactant (A × B2) | 5.5077 | 0.0343 | −0.1016 | 0.0023 | ||||
%Wax × %Wax × %PEG400 (A2 × C) | 0.0363 | 0.0688 |
Samples | Melting Point (°C) | Enthalpy (J/g) |
---|---|---|
Glyceryl monostearate | 73.79 | −167.05 |
Poloxamer407 | 57.45 | −105.38 |
Blank NLC | 44.09 | −26.45 |
SBO-NLC | 65.72 | −27.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiyasut, C.; Sivamaruthi, B.S.; Jungsinyatam, P.; Tansrisook, C.; Jinarat, D.; Chaiyasut, K.; Peerajan, S.; Rungseevijitprapa, W. Development and Evaluation of Elaeagnus rhamnoides (L.) A. Nelson Oil-Loaded Nanostructured Lipid Carrier for Improved Skin Hydration. Appl. Sci. 2022, 12, 8324. https://doi.org/10.3390/app12168324
Chaiyasut C, Sivamaruthi BS, Jungsinyatam P, Tansrisook C, Jinarat D, Chaiyasut K, Peerajan S, Rungseevijitprapa W. Development and Evaluation of Elaeagnus rhamnoides (L.) A. Nelson Oil-Loaded Nanostructured Lipid Carrier for Improved Skin Hydration. Applied Sciences. 2022; 12(16):8324. https://doi.org/10.3390/app12168324
Chicago/Turabian StyleChaiyasut, Chaiyavat, Bhagavathi Sundaram Sivamaruthi, Patchareepon Jungsinyatam, Chawin Tansrisook, Damrongsak Jinarat, Khontaros Chaiyasut, Sartjin Peerajan, and Wandee Rungseevijitprapa. 2022. "Development and Evaluation of Elaeagnus rhamnoides (L.) A. Nelson Oil-Loaded Nanostructured Lipid Carrier for Improved Skin Hydration" Applied Sciences 12, no. 16: 8324. https://doi.org/10.3390/app12168324
APA StyleChaiyasut, C., Sivamaruthi, B. S., Jungsinyatam, P., Tansrisook, C., Jinarat, D., Chaiyasut, K., Peerajan, S., & Rungseevijitprapa, W. (2022). Development and Evaluation of Elaeagnus rhamnoides (L.) A. Nelson Oil-Loaded Nanostructured Lipid Carrier for Improved Skin Hydration. Applied Sciences, 12(16), 8324. https://doi.org/10.3390/app12168324