An Overview of Nanofiltration and Nanoadsorption Technologies to Emerging Pollutants Treatment
Abstract
:1. Introduction
2. Emerging Pollutants
3. Nanotechnological Approaches to the Treatment of Emerging Pollutants
3.1. Nanofiltration Membranes
3.2. Nanoadsorbents
3.2.1. Carbon-Based nanoadsorbents
Adsorbent | Modification | Adsorbate (Contaminant) | Adsorption Capacity (mg g−1) | Mechanism of Adsorption | Reference |
---|---|---|---|---|---|
Magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite (0.6 g L−1) | Simultaneous adsorption of cobalt ions (10 mg L−1) | 44.5 (cobalt ion) | Electrostatic forces, hydrogen bonding, π-π, and n-π interactions | [73] | |
malachite green dye (15 mg L−1) | 62.1 (azo dye) | ||||
imidacloprid pesticide (6 mg L−1) | 25.2 (imidacloprid)I | ||||
Zero-valent iron nanoparticles/graphene oxide/copper nanocomposite | Bisphenol A (10 mg L−1) | 21.6 | Hydrogen bonding | [74] | |
Polypyrrole doped graphene oxide/covalent organic framework nanocomposite (0.2 g L−1) | Indomethacin (5–40 mg L−1) | 115 | Hydrogen bonding, electrostatic interactions, and π-π interaction | [75] | |
Diclofenac (5–30 mg L−1) | 138 | ||||
Carbon nanotube (0.5 g L−1) | Functionalized with sodium hypochlorite | Ciprofloxacin (10–160 mg L−1) | 206 | Electrostatic interaction | [76] |
Multi-walled carbon nanotube (0.8 g L−1) | Modify with KOH | Estrone (2–50 mg L−1) | 50.6 | Physisorption mechanism | [77] |
17β-estradiol (2–50 mg L−1) | 74.3 | ||||
17α-ethinylestradiol (2–50 mg L−1) | 39.2 | ||||
Multi-walled carbon nanotube (1 g L−1) | β-cyclodextrin and MnFe2O4 nanoparticles | Tetracycline (10–100 mg L−1) | 89.5 | π-π interaction, electrostatic interactions, hydrogen bonding | [78] |
Multi-walled carbon nanotubes (0.2 g L−1) | Functionalized with magnetic iron oxides | Atrazine herbicide (1–20 mg L−1) | 40.2 | Hydrogen bonding, Van der Waals forces, and hydrophobic interactions | [79] |
Graphene oxide (0.5 g L−1) | Functionalized with magnetic iron oxide nanoparticles and cobalt oxide nanoparticles | Caffeine (1–60 mg L−1) | 28.9 | Hydrogen bonding and π-π interaction | [70] |
Graphene oxide (0.15 g L−1) | Metformin (8–40 mg L−1) | 96.8 | π-π interaction and hydrogen bonding | [80] | |
Graphene oxide nanosheets (0.1 g L−1) | 17β-Estradiol estrogen (0.05–4 mg L−1) | 149 | π-π interaction and hydrogen bonding | [71] | |
Porous reduced graphene oxide (0.25 g L−1) | Atenolol | 136 | Electrostatic and π-π interactions, hydrogen bonding, and van der Waals forces | [72] | |
Carbamazepine (0.1–100 mg L−1) | 147 | ||||
Ciprofloxacin (0.1–100 mg L−1) | 329 | ||||
Diclofenac (0.1–100 mg L−1) | 76 | ||||
Gemfibrozil (0.1–15 mg L−1) | 40 | ||||
Ibuprofen (0.1–21 mg L−1) | 29 | ||||
Metal-organic framework (MOF) MIL-101 (0.2 g L−1) | Functionalized with hydroxyl groups | p-Chloro-m-xylenol (50 mg L−1) | 79 | Hydrogen bonding | [69] |
Bisphenol A (50 mg L−1) | 97 | ||||
Naproxen (50 mg L−1) | 156 | ||||
Triclosan (50 mg L−1) | 112 | ||||
Ketoprofen (50 mg L−1) | 156 | ||||
Metal-organic framework (MOF) UiO-67 (1.2 g L−1) | Carbamazepine (5–100 mg L−1) | 82.6 | Hydrophobic and π-π interactions | [81] | |
Aluminum-based metal-organic framework (Al-MIL-53) (2.6 g L−1) | Functionalized with amino groups | Organophosphorus insecticide dimethoate (20 mg L−1) | 513 | Electrostatic interactions and hydrogen bond | [68] |
3.2.2. Metal-Based Nanoadsorbents
3.2.3. Other Nanoadsorbents
4. Synthesis and Fabrication of Nanomaterials for the Remediation of Emerging Pollutants
4.1. Nanofiltration Membranes
4.2. Carbon-Based Nanoadsorbents
4.3. Metal-Based Nanoadsorbents
5. Nanoadsorbent Regeneration Techniques
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manikandan, S.; Karmegam, N.; Subbaiya, R.; Karthiga Devi, G.; Arulvel, R.; Ravindran, B.; Kumar Awasthi, M. Emerging nano-structured innovative materials as adsorbents in wastewater treatment. Bioresour. Technol. 2021, 320, 124394. [Google Scholar] [CrossRef] [PubMed]
- Parida, V.K.; Saidulu, D.; Majumder, A.; Srivastava, A.; Gupta, B.; Gupta, A.K. Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. J. Environ. Chem. Eng. 2021, 9, 105966. [Google Scholar] [CrossRef]
- Varsha, M.; Senthil Kumar, P.; Senthil Rathi, B. A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. Chemosphere 2022, 287, 132270. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Guruge, K.S.; Goswami, P.; Tanoue, R.; Nomiyama, K.; Wijesekara, R.G.S.; Dharmaratne, T.S. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci. Total Environ. 2019, 690, 683–695. [Google Scholar] [CrossRef]
- Sharma, B.M.; Bečanová, J.; Scheringer, M.; Sharma, A.; Bharat, G.K.; Whitehead, P.G.; Klánová, J.; Nizzetto, L. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 2019, 646, 1459–1467. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Li, M.; Du, M.; Li, X.; Li, Y. A review of a class of emerging contaminants: The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (opfrs). Int. J. Mol. Sci. 2019, 20, 2874. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Xu, J.; Keller, A.A.; He, L.; Gu, Y.; Zheng, W.; Sun, D.; Lu, Z.; Huang, J.; Huang, X.; et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020, 744, 140977. [Google Scholar] [CrossRef]
- Pintado-Herrera, M.G.; Wang, C.; Lu, J.; Chang, Y.P.; Chen, W.; Li, X.; Lara-Martín, P.A. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China. J. Hazard. Mater. 2017, 323, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.I.; Din Dar, M.U.; Bhat, R.A.; Singh, J.P.; Singh, K.; Bhat, S.A. Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecol. Eng. 2020, 152, 105882. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Chen, Y.; Vymazal, J.; Březinová, T.; Koželuh, M.; Kule, L.; Huang, J.; Chen, Z. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci. Total Environ. 2016, 566–567, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Dwivedi, A.D.; Lee, W.N.; Zhao, X.; Liu, W.; Sillanpää, M.; Zhao, D.; Huang, C.H.; Fu, J. Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environ. Sci. Nano 2018, 5, 27–47. [Google Scholar] [CrossRef]
- Karthigadevi, G.; Manikandan, S.; Karmegam, N.; Subbaiya, R.; Chozhavendhan, S.; Ravindran, B.; Chang, S.W.; Awasthi, M.K. Chemico-nanotreatment methods for the removal of persistent organic pollutants and xenobiotics in water—A review. Bioresour. Technol. 2021, 324, 124678. [Google Scholar] [CrossRef]
- Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100290. [Google Scholar] [CrossRef]
- Aguilar-Pérez, K.M.; Avilés-Castrillo, J.I.; Ruiz-Pulido, G. Nano-sorbent materials for pharmaceutical-based wastewater effluents—An overview. Case Stud. Chem. Environ. Eng. 2020, 2, 100028. [Google Scholar] [CrossRef]
- Bhat, S.A.; Sher, F.; Hameed, M.; Bashir, O.; Kumar, R.; Vo, D.-V.N.; Ahmad, P.; Lima, E.C. Sustainable nanotechnology based wastewater treatment strategies: Achievements, challenges and future perspectives. Chemosphere 2021, 288, 132606. [Google Scholar] [CrossRef]
- Ganie, A.S.; Bano, S.; Khan, N.; Sultana, S.; Rehman, Z.; Rahman, M.M.; Sabir, S.; Coulon, F.; Khan, M.Z. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 2021, 275, 130065. [Google Scholar] [CrossRef]
- Kokkinos, P.; Mantzavinos, D.; Venieri, D. Current trends in the application of nanomaterials for the removal of emerging micropollutants and pathogens from water. Molecules 2020, 25, 2016. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar Kollarahithlu, S.; Balakrishnan, R.M. Adsorption of pharmaceuticals pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite. J. Clean. Prod. 2021, 294, 126155. [Google Scholar] [CrossRef]
- Rawtani, D.; Khatri, N.; Tyagi, S.; Pandey, G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. J. Environ. Manag. 2018, 206, 749–762. [Google Scholar] [CrossRef]
- Previšić, A.; Rožman, M.; Mor, J.R.; Acuña, V.; Serra-Compte, A.; Petrović, M.; Sabater, S. Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. Sci. Total Environ. 2020, 704, 135333. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Raffa, R.B.; Pergolizzi, J.V.; Taylor, R.; Kitzen, J.M. Sunscreen bans: Coral reefs and skin cancer. J. Clin. Pharm. Ther. 2019, 44, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Downs, C.A.; Che, X.; Zhang, Z.; Li, Y.; Liu, B.; Li, Q.; Li, Y.; Gao, H. The toxicological effects of oxybenzone, an active ingredient in suncream personal care products, on prokaryotic alga Arthrospira sp. and eukaryotic alga Chlorella sp. Aquat. Toxicol. 2019, 216, 105295. [Google Scholar] [CrossRef]
- Peña, A.; Delgado-Moreno, L.; Rodríguez-Liébana, J.A. A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. Sci. Total Environ. 2020, 718, 134468. [Google Scholar] [CrossRef]
- Yan, S.; Subramanian, S.B.; Tyagi, R.D.; Surampalli, R.Y.; Zhang, T.C. Emerging contaminants of environmental concern: Source, transport, fate, and treatment. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2010, 14, 2–20. [Google Scholar] [CrossRef]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- EU. Directive 2013/11/EU of the European Parliament and of the Council of 12 August 2013; EU: Brussels, Belgium, 2013; pp. 1–17. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2017.
- Montagner, C.C.; Sodré, F.F.; Acayaba, R.D.; Vidal, C.; Campestrini, I.; Locatelli, M.A.; Pescara, I.C.; Albuquerque, A.F.; Umbuzeiro, G.A.; Jardim, W.F. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 2019, 30, 614–632. [Google Scholar] [CrossRef]
- Singh, V.; Suthar, S. Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India. Chemosphere 2021, 268, 129331. [Google Scholar] [CrossRef] [PubMed]
- Sposito, J.C.V.; Montagner, C.C.; Casado, M.; Navarro-Martín, L.; Jut Solórzano, J.C.; Piña, B.; Grisolia, A.B. Emerging contaminants in Brazilian rivers: Occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere 2018, 209, 696–704. [Google Scholar] [CrossRef] [PubMed]
- EU. Commission Implementing Decision (EU) 2018/840 of 5 June 2018; EU: Brussels, Belgium, 2018. [Google Scholar]
- EPA. National Primary Drinking Water Regulations. Environmental Protection Agency (May 2009 816-F-09-004); EPA: New York, NY, USA, 2009.
- EU. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008; EU: Brussels, Belgium, 2008. [Google Scholar]
- EU. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; EU: Brussels, Belgium, 1998. [Google Scholar]
- EPA. Drinking Water Contaminant Candidate List 4 Environmental Protection Agency; EPA: New York, NY, USA, 2016.
- López-Serna, R.; Jurado, A.; Vázquez-Suñé, E.; Carrera, J.; Petrović, M.; Barceló, D. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ. Pollut. 2013, 174, 305–315. [Google Scholar] [CrossRef] [PubMed]
- FDA. Safety and Effectiveness of Health Care Antiseptics, Topical Antimicrobial Drug Products for Over-the-Counter Human Use. Fed. Regist. 2017, 82, 60474–60503. [Google Scholar]
- EU. Commission Implementing Decision (EU) 2016/110 of 27 January 2016; EU: Brussels, Belgium, 2016. [Google Scholar]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2019, 12, 4897–4919. [Google Scholar] [CrossRef] [Green Version]
- Boffa, V.; Fabbri, D.; Calza, P.; Revelli, D.; Christensen, P.V. Potential of nanofiltration technology in recirculating aquaculture systems in a context of circular economy. Chem. Eng. J. Adv. 2022, 10, 100269. [Google Scholar] [CrossRef]
- García Doménech, N.; Purcell-Milton, F.; Gun’ko, Y.K. Recent progress and future prospects in development of advanced materials for nanofiltration. Mater. Today Commun. 2020, 23, 100888. [Google Scholar] [CrossRef]
- Foureaux, A.F.S.; Reis, E.O.; Lebron, Y.; Moreira, V.; Santos, L.V.; Amaral, M.S.; Lange, L.C. Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis. Sep. Purif. Technol. 2019, 212, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Singh, I.; Mishra, P.K. Nano-membrane Filtration a Novel Application of Nanotechnology for Waste Water Treatment. Mater. Today Proc. 2020, 29, 327–332. [Google Scholar] [CrossRef]
- Kamrani, M.; Akbari, A.; Yunessnia lehi, A. Chitosan-modified acrylic nanofiltration membrane for efficient removal of pharmaceutical compounds. J. Environ. Chem. Eng. 2018, 6, 583–587. [Google Scholar] [CrossRef]
- Souza, D.I.; Dottein, E.M.; Giacobbo, A.; Siqueira Rodrigues, M.A.; De Pinho, M.N.; Bernardes, A.M. Nanofiltration for the removal of norfloxacin from pharmaceutical effluent. J. Environ. Chem. Eng. 2018, 6, 6147–6153. [Google Scholar] [CrossRef]
- Karina, Z.; Schellenberg, C.; Richter, J. Alkali-Stable Nanofiltration Composite Membrane and Method of Manufacture Thereof. U.S. Patent US2021252458A, 19 August 2021. [Google Scholar]
- Zhao, C.W.; Yu, Y.; Luan, Z.K.; Jia, Z.P.; Wang, J. Nanofiltration Method for Removing PFOS in Drinking Water. CN Patent CN102874900A, 16 January 2013. [Google Scholar]
- Deng, J.; Qian, Q.; Tong, L.; Yang, H.; Ye, C.; Ye, J.; Yu, F. Glyphosate Waste Water Recycling Device by Nanofiltration. CN Patent CN201458860U, 12 May 2010. [Google Scholar]
- Dubey, S.; Banerjee, S.; Upadhyay, S.N.; Sharma, Y.C. Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. J. Mol. Liq. 2017, 240, 656–677. [Google Scholar] [CrossRef]
- Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostructure Chem. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Isaeva, V.I.; Vedenyapina, M.D.; Kurmysheva, A.Y.; Weichgrebe, D.; Nair, R.R.; Nguyen, N.P.T.; Kustov, L.M. Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021, 26, 6628. [Google Scholar] [CrossRef]
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Kumar, V.; Katyal, D.; Nayak, S.S. Removal of heavy metals and radionuclides from water using nanomaterials: Current scenario and future prospects. Environ. Sci. Pollut. Res. Int. 2020, 27, 41199–41224. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, J.; Sun, P.; Liu, J.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef]
- Li, J.; Pan, S.; Fang, X.; Wang, L.; Sun, X.; Shen, J.; Han, W.; Liu, X. Ultrafiltration Membrane and a Preparation Method Thereof. U.S. Patent US10143972B2, 4 December 2018. [Google Scholar]
- Alqadami, A.A.; Khan, M.A.; Alothman, Z.A.; Alsohaimi, I.H.; Siddiqui, M.R.; Ghfar, A.A. Magnetic Polymer Nanocomposite for Removal of Divalent Heavy Metal Ions from Water. U.S. Patent US10245576B1, 2 April 2019. [Google Scholar]
- Xu, Y.; Zhang, Y.; Li, A.; Feng, J.; Wang, C.; Wang, Y. Preparation Method and Application of WO3@NiCoP Nano-Adsorbent. CN Patent CN114471445A, 13 May 2022. [Google Scholar]
- Lu, C.; Chung, Y.L.; Chang, K.F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J. Hazard. Mater. 2006, 138, 304–310. [Google Scholar] [CrossRef]
- Piao, L.; Liu, Q.; Li, Y.; Wang, C. Adsorption of L-phenylalanine on single-walled carbon nanotubes. J. Phys. Chem. C 2008, 112, 2857–2863. [Google Scholar] [CrossRef]
- Cho, H.H.; Smith, B.A.; Wnuk, J.D.; Fairbrother, D.H.; Ball, W.P. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environ. Sci. Technol. 2008, 42, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Sun, J.; Gao, L. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2008, 312, 160–165. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Taha, M.; Abdel-Gawad, H.; Hegazi, B. Amino-functionalized Al-MIL-53 for dimethoate pesticide removal from wastewater and their intermolecular interactions. J. Mol. Liq. 2021, 327, 114852. [Google Scholar] [CrossRef]
- Song, J.Y.; Jhung, S.H. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption. Chem. Eng. J. 2017, 322, 366–374. [Google Scholar] [CrossRef]
- Andrade, M.B.; Santos, T.R.T.; Guerra, A.C.S.; Silva, M.F.; Demiti, G.M.M.; Bergamasco, R. Evaluation of magnetic nano adsorbent produced from graphene oxide with iron and cobalt nanoparticles for caffeine removal from aqueous medium. Chem. Eng. Process.-Process Intensif. 2022, 170, 108694. [Google Scholar] [CrossRef]
- Jiang, L.H.; Liu, Y.G.; Zeng, G.M.; Xiao, F.Y.; Hu, X.J.; Hu, X.; Wang, H.; Li, T.T.; Zhou, L.; Tan, X.F. Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Eng. J. 2016, 284, 93–102. [Google Scholar] [CrossRef]
- Khalil, A.M.E.; Memon, F.A.; Tabish, T.A.; Salmon, D.; Zhang, S.; Butler, D. Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chem. Eng. J. 2020, 398, 125440. [Google Scholar] [CrossRef]
- Motaghi, H.; Arabkhani, P.; Parvinnia, M.; Asfaram, A. Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Sep. Purif. Technol. 2022, 284, 120258. [Google Scholar] [CrossRef]
- Yousefinia, S.; Sohrabi, M.R.; Motiee, F.; Davallo, M. The efficient removal of bisphenol A from aqueous solution using an assembled nanocomposite of zero-valent iron nanoparticles/graphene oxide/copper: Adsorption isotherms, kinetic, and thermodynamic studies. J. Contam. Hydrol. 2021, 243, 103906. [Google Scholar] [CrossRef]
- Feng, J.B.; Li, Y.Y.; Zhang, Y.; Xu, Y.Y.; Cheng, X.W. Adsorptive removal of indomethacin and diclofenac from water by polypyrrole doped-GO/COF-300 nanocomposites. Chem. Eng. J. 2022, 429, 132499. [Google Scholar] [CrossRef]
- Yu, F.; Sun, S.; Han, S.; Zheng, J.; Ma, J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J. 2016, 285, 588–595. [Google Scholar] [CrossRef]
- Prokić, D.; Vukčević, M.; Mitrović, A.; Maletić, M.; Kalijadis, A.; Janković-Častvan, I.; Đurkić, T. Adsorption of estrone, 17β-estradiol, and 17α-ethinylestradiol from water onto modified multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon. Environ. Sci. Pollut. Res. Int. 2022, 29, 4431–4445. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, R.; Peighambardoust, S.J.; Latifi, P.; Ahmadi, A.; Alizadeh, M.; Ramavandi, B. Carbon nanotubes/β-cyclodextrin/MnFe2O4 as a magnetic nanocomposite powder for tetracycline antibiotic decontamination from different aqueous environments. J. Environ. Chem. Eng. 2021, 9, 106344. [Google Scholar] [CrossRef]
- Tang, W.W.; Zeng, G.M.; Gong, J.L.; Liu, Y.; Wang, X.Y.; Liu, Y.Y.; Liu, Z.F.; Chen, L.; Zhang, X.R.; Tu, D.Z. Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem. Eng. J. 2012, 211–212, 470–478. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, Y.G.; Liu, S.B.; Zeng, G.M.; Jiang, L.H.; Tan, X.F.; Zhou, L.; Zeng, W.; Li, T.T.; Yang, C.P. Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 2017, 179, 20–28. [Google Scholar] [CrossRef]
- Akpinar, I.; Yazaydin, A.O. Rapid and Efficient Removal of Carbamazepine from Water by UiO-67. Ind. Eng. Chem. Res. 2017, 56, 15122–15130. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, B.; Xing, Y. Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants. Environ. Sci. Pollut. Res. 2021, 28, 7599–7620. [Google Scholar] [CrossRef]
- Singh, N.B.; Nagpal, G.; Agrawal, S. Rachna Water purification by using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Jang, M.; Park, C.M.; Muñoz-Senmache, J.C.; Hernández-Maldonado, A.J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chem. Eng. J. 2019, 369, 928–946. [Google Scholar] [CrossRef]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef]
- Caravaca, M.; Vicente-Martínez, Y.; Soto-Meca, A.; Angulo-González, E. Total removal of amoxicillin from water using magnetic core nanoparticles functionalized with silver. Environ. Res. 2022, 211, 113091. [Google Scholar] [CrossRef] [PubMed]
- Eskandarian, L.; Pajootan, E.; Arami, M. Novel Super Adsorbent Molecules, Carbon Nanotubes Modified by Dendrimer Miniature Structure, for the Removal of Trace Organic Dyes. Ind. Eng. Chem. Res. 2014, 53, 14841–14853. [Google Scholar] [CrossRef]
- Yadav, N.; Garg, V.K.; Chhillar, A.K.; Rana, J.S. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. Chemosphere 2021, 280, 130792. [Google Scholar] [CrossRef]
- Bhavya, G.; Belorkar, S.A.; Mythili, R.; Geetha, N.; Shetty, H.S.; Udikeri, S.S.; Jogaiah, S. Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials. Chemosphere 2021, 275, 129975. [Google Scholar] [CrossRef]
- Ho, H.L.; Chan, W.K.; Blondy, A.; Yeung, K.L.; Schrotter, J.C. Experiment and modeling of advanced ozone membrane reactor for treatment of organic endocrine disrupting pollutants in water. Catal. Today 2012, 193, 120–127. [Google Scholar] [CrossRef]
- Paul, M.; Jons, S.D. Chemistry and fabrication of polymeric nanofiltration membranes: A review. Polymer 2016, 103, 417–456. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Wu, W.; Yu, H.; Che, R.; Kang, G.; Cao, Y. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation. J. Membr. Sci. 2022, 659, 120809. [Google Scholar] [CrossRef]
- Li, W.; Shi, C.; Zhou, A.; He, X.; Sun, Y.; Zhang, J. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation. Sep. Purif. Technol. 2017, 186, 233–242. [Google Scholar] [CrossRef]
- Lu, D.; Ma, T.; Lin, S.; Zhou, Z.; Li, G.; An, Q.; Yao, Z.; Sun, Q.; Sun, Z.; Zhang, L. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+. J. Membr. Sci. 2021, 635, 119504. [Google Scholar] [CrossRef]
- Feng, Y.; Peng, H.; Zhao, Q. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine. Sep. Purif. Technol. 2022, 280, 119848. [Google Scholar] [CrossRef]
- Hermans, S.; Dom, E.; Mariën, H.; Koeckelberghs, G.; Vankelecom, I.F.J. Efficient synthesis of interfacially polymerized membranes for solvent resistant nanofiltration. J. Membr. Sci. 2015, 476, 356–363. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Zhang, N.; Li, X.; Bai, X.; Li, T. Quaternized carbon-based nanoparticles embedded positively charged composite membranes towards efficient removal of cationic small-sized contaminants. J. Membr. Sci. 2021, 630, 119332. [Google Scholar] [CrossRef]
- Martins, P.M.; Santos, B.; Salazar, H.; Carabineiro, S.A.C.; Botelho, G.; Tavares, C.J.; Lanceros-Mendez, S. Multifunctional hybrid membranes for photocatalytic and adsorptive removal of water contaminants of emerging concern. Chemosphere 2022, 293, 133548. [Google Scholar] [CrossRef]
- Rahman, A.F.H.A.; Seman, M.N.A. Modification of commercial Ultrafiltration and Nanofiltration Membranes by UV-photografting Technique for Forward Osmosis Application. Mater. Today Proc. 2019, 17, 590–598. [Google Scholar] [CrossRef]
- Linggawati, A.; Mohammad, A.W.; Ghazali, Z. Effect of electron beam irradiation on morphology and sieving characteristics of nylon-66 membranes. Eur. Polym. J. 2009, 45, 2797–2804. [Google Scholar] [CrossRef]
- Volkov, A.V.; Tsarkov, S.E.; Gilman, A.B.; Khotimsky, V.S.; Roldughin, V.I.; Volkov, V.V. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration. Adv. Colloid Interface Sci. 2015, 222, 716–727. [Google Scholar] [CrossRef]
- He, Z.; Lyu, Z.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-based membranes for water and wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123513. [Google Scholar] [CrossRef]
- Jiang, M.; Ye, K.; Lin, J.; Zhang, X.; Ye, W.; Zhao, S.; Van der Bruggen, B. Effective dye purification using tight ceramic ultrafiltration membrane. J. Membr. Sci. 2018, 566, 151–160. [Google Scholar] [CrossRef]
- Chen, P.; Ma, X.; Zhong, Z.; Zhang, F.; Xing, W.; Fan, Y. Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4. Desalination 2017, 404, 102–111. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Yu, H.; Yang, F.; Tang, C.Y.; Quan, X.; Dong, Y. High-flux robust ceramic membranes functionally decorated with nano-catalyst for emerging micro-pollutant removal from water. J. Membr. Sci. 2020, 611, 118281. [Google Scholar] [CrossRef]
- Singh, K.K.; Singh, A.; Rai, S. A study on nanomaterials for water purification. Mater. Today Proc. 2021, 51, 1157–1163. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Poudel, Y.R.; Li, W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys. 2018, 7, 7–34. [Google Scholar] [CrossRef]
- Prasek, J.; Huska, D.; Jasek, O.; Zajickova, L.; Trnkova, L.; Adam, V.; Kizek, R.; Hubalek, J. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids. Nanoscale Res. Lett. 2011, 6, 385. [Google Scholar] [CrossRef] [Green Version]
- Dervishi, E.; Li, Z.; Xu, Y.; Saini, V.; Biris, A.R.; Lupu, D.; Biris, A.S. Carbon Nanotubes: Synthesis, Properties, and Applications. Part. Sci. Technol. 2009, 27, 107–125. [Google Scholar] [CrossRef]
- Dai, H.; Rinzler, A.G.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R.E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260, 471–475. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, P.; Liu, X.; Yan, B.; Xiang, L.; Zhang, J.; Gong, L.; Huang, J.; Cui, K.; Zhu, L.; et al. An amphiphobic graphene-based hydrogel as oil-water separator and oil fence material. Chem. Eng. J. 2018, 353, 708–716. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, B. Sulfonated Graphene Nanosheets as a Superb Adsorbent for Various Environmental Pollutants in Water. Environ. Sci. Technol. 2015, 49, 7364–7372. [Google Scholar] [CrossRef] [PubMed]
- Ersan, G.; Apul, O.G.; Perreault, F.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets: A review. Water Res. 2017, 126, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Balasubramanian, R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 2014, 204, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Leonel, A.G.; Mansur, A.A.P.; Mansur, H.S. Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. Water Res. 2021, 190, 116693. [Google Scholar] [CrossRef] [PubMed]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Marcelo, G.A.; Lodeiro, C.; Capelo, J.L.; Lorenzo, J.; Oliveira, E. Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems. Mater. Sci. Eng. C 2020, 106, 110104. [Google Scholar] [CrossRef]
- Shaterabadi, Z.; Nabiyouni, G.; Soleymani, M. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 75, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Munir, H.; Bilal, M.; Mulla, S.I.; Abbas Khan, H.; Iqbal, H.M.N. Plant-Mediated Green Synthesis of Nanoparticles. In Advances in Green Synthesis, 1st ed.; Inamuddin, B.R., Ahamed, M.I., Khan, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 75–89. [Google Scholar]
- Shukla, S.; Khan, R.; Daverey, A. Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review. Environ. Technol. Innov. 2021, 24, 101924. [Google Scholar] [CrossRef]
- Scuderi, M.; Esposito, M.; Todisco, F.; Simeone, D.; Tarantini, I.; De Marco, L.; De Giorgi, M.; Nicotra, G.; Carbone, L.; Sanvitto, D.; et al. Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. J. Phys. Chem. C 2016, 120, 24314–24323. [Google Scholar] [CrossRef]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.S.; Robertson, A.W.; Warner, J.H.; Kim, S.O.; Kim, H. Low-Temperature Chemical Vapor Deposition Synthesis of Pt–Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis. Adv. Mater. 2016, 28, 7115–7122. [Google Scholar] [CrossRef]
- Shifa, T.A.; Wang, F.; Cheng, Z.; He, P.; Liu, Y.; Jiang, C.; Wang, Z.; He, J. High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and their Photocatalytic Activity. Adv. Funct. Mater. 2018, 28, 1800548. [Google Scholar] [CrossRef]
- Lerner, M.I.; Glazkova, E.A.; Lozhkomoev, A.S.; Svarovskaya, N.V.; Bakina, O.V.; Pervikov, A.V.; Psakhie, S.G. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol. 2016, 295, 307–314. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Khan, H.; Khan, H.A.; Iqbal, H.M.N. Fabrication strategies for functionalized nanomaterials. In Nanomaterials: Synthesis, Characterization, Hazards and Safety; Springer: Berlin, Germany, 2021; pp. 55–95. [Google Scholar]
- Al-maqdi, K.A.; Bilal, M.; Alzamly, A.; Iqbal, H.M.N.; Shah, I.; Ashraf, S.S. Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile Platform with Biosensing, Biocatalytic, and Environmental Promise. Nanomaterials 2021, 11, 1460. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Anweshan, A.; Purkait, M.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere 2020, 259, 127509. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Terra, A.L.M.; Cruz, N.D.; Gonçalves, I.S.; Moreira, J.B.; Kuntzler, S.G.; Morais, M.G. Microalgae Cultivation and Industrial Waste: New Biotechnologies for Obtaining Silver Nanoparticles. Mini. Rev. Org. Chem. 2019, 16, 369–376. [Google Scholar] [CrossRef]
- Bulgariu, L.; Gavrilescu, M. Bioremediation of Heavy Metals by Microalgae. In Handbook of Marine Microalgae: Biotechnology Advances, 1st ed.; Kim, S.-K., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 457–469. [Google Scholar]
- Terra, A.L.M.; Kosinski, R.C.; Moreira, J.B.; Costa, J.A.V.; Morais, M.G. Microalgae biosynthesis of silver nanoparticles for application in the control of agricultural pathogens. J. Environ. Sci. Health. B 2019, 54, 709–716. [Google Scholar] [CrossRef]
- Ali, M.E.; Ullah, M.; Hamid, S.B.A. Conventional to Nano-Green Adsorbents for Water Pollution Management—A Review. Adv. Mater. Res. 2014, 925, 674–678. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef] [PubMed]
- Karimifard, S.; Alavi Moghaddam, M.R. Enhancing the adsorption performance of carbon nanotubes with a multistep functionalization method: Optimization of Reactive Blue 19 removal through response surface methodology. Process Saf. Environ. Prot. 2016, 99, 20–29. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Moghaddam, M.R.A.; Kowsari, E. Efficient regeneration/reuse of graphene oxide as a nanoadsorbent for removing basic Red 46 from aqueous solutions. J. Mol. Liq. 2020, 312, 113386. [Google Scholar] [CrossRef]
- Ghani, A.A.; Shahzad, A.; Moztahida, M.; Tahir, K.; Jeon, H.; Kim, B.; Lee, D.S. Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater. Chem. Eng. J. 2021, 421, 127780. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Srivastava, V.; Singh, V.K.; Kaul, S.N.; Weng, C.H. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 2009, 30, 583–609. [Google Scholar] [CrossRef]
- Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C.M.; Anitha, K.L. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J. Water Process Eng. 2020, 38, 101561. [Google Scholar] [CrossRef]
- Wu, G.; Ma, J.; Li, S.; Guan, J.; Jiang, B.; Wang, L.; Li, J.; Wang, X.; Chen, L. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J. Colloid Interface Sci. 2018, 528, 360–371. [Google Scholar] [CrossRef]
Compound | CAS Number | Emerging Pollutants | Occurrence | Maximum Concentration (ng L−1) | Reference | Recommended Limit U.S EPA | Recommended Limit Europe Union | WHO [32] |
---|---|---|---|---|---|---|---|---|
Stimulants | 58-08-2 | Caffeine | Drinking waters | 2–5845 | [33] | - | - | - |
Surface water | 743 | [8] | ||||||
29.62–1104.8 | [34] | |||||||
1040 | [35] | |||||||
19–127,000 | [33] | |||||||
Groundwater | 262 | [8] | ||||||
2–53 | [33] | |||||||
Plasticizer | 80-05-7 | Bisphenol A | Drinking waters | 1–178 | [33] | - | Substance subject to review for possible identification as priority substances or priority hazardous substance [36] | - |
Surface water | 29.5 | [35] | ||||||
2–13,016 | [33] | |||||||
Groundwater | 2–643 | [33] | ||||||
Pesticide | 1912-24-9 | Atrazine | Drinking waters | 1–687 | [33] | 0.003 mg L−1 [37] | 0.6 μg L−1 [31,38] | 100 μg L−1 |
Surface water | 42.1 | [35] | ||||||
1–611 | [33] | |||||||
Groundwater | 2–5 | [33] | ||||||
Pesticide | 121-75-5 | Malathion | Surface water | 50.4 | [35] | - | 0.1 μg L−1 [39] | No established reference value because occurs in drinking water at concentration below those of health concern (<2 μg L−1) |
Pesticide | 330-54-1 | Diuron | Surface water | 11.7 | [35] | Listed as priority pollutant or hazardous substance [40] | 0.2 μg L−1 [31,38] | - |
Pharmaceuticals | 22071-15-4 | Ketoprofen | Surface water | 245 | [34] | - | - | - |
107 | [8] | |||||||
Groundwater | 23.4 | [8] | ||||||
215 | [41] | |||||||
Pharmaceuticals | 15307-86-5 | Diclofenac | Surface water | 41.4 | [8] | - | Substances should be removed from the watch list [36] | - |
Groundwater | 1.56 | [8] | ||||||
380 | [41] | |||||||
Pharmaceuticals | 298-46-4 | Carbamazepine | Surface water | 16.1 | [8] | - | - | - |
Groundwater | 27.2 | [8] | ||||||
136 | [41] | |||||||
Pharmaceuticals | 439-14-5 | Diazepam | Groundwater | 35.1 | [41] | - | - | - |
Pharmaceuticals | 15687-27-1 | Ibuprofeno | Surface water | 372.1 | [34] | - | - | - |
22.85 | [8] | |||||||
Groundwater | 49.4 | [8] | ||||||
988 | [41] | |||||||
Pharmaceuticals | 3380-34-5 | Triclosan | Surface water | 139 | [34] | Only eligible for specified use [42] | Use is not approved [43] | - |
8.6 | [35] | |||||||
2–289 | [33] | |||||||
Drinking waters | 2–37 | [33] | ||||||
Groundwater | 22–284 | [33] | ||||||
Hormones | 50-28-2 | 17β-estradiol | Drinking waters | 18–35 | [33] | Listed as priority pollutant or hazardous substance [40] | 0.4 ng L−1 [36] | - |
Surface water | 2–6806 | [33] | ||||||
Hormones | 57-63-6 | 17α-ethynylestradiol | Surface water | 4–4390 | [33] | Listed as priority pollutant or hazardous substance [40] | 0.035 ng L−1 [36] | - |
Drinking waters | 32 | [33] | ||||||
Hormones | 50-27-1 | Estriol | Drinking waters | 0.4–125 | [33] | Listed as priority pollutant or hazardous substance [40] | - | - |
Surface water | 11.9 | [35] | ||||||
1–1398 | [33] | |||||||
Hormones | 53-16-7 | Estrone | Drinking waters | 0.6–20 | [33] | Listed as priority pollutant or hazardous substance [40] | 0.4 ng L−1 [36] | - |
Surface water | 0.8–39 | [33] | ||||||
Groundwater | 5 | [33] | ||||||
Hormones | 58-22-0 | Testosterone | Drinking waters | 2–5 | [33] | - | - | - |
Surface water | 1–329 | [33] | ||||||
Groundwater | 34–36 | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, J.B.; Santos, T.D.; Zaparoli, M.; de Almeida, A.C.A.; Costa, J.A.V.; de Morais, M.G. An Overview of Nanofiltration and Nanoadsorption Technologies to Emerging Pollutants Treatment. Appl. Sci. 2022, 12, 8352. https://doi.org/10.3390/app12168352
Moreira JB, Santos TD, Zaparoli M, de Almeida ACA, Costa JAV, de Morais MG. An Overview of Nanofiltration and Nanoadsorption Technologies to Emerging Pollutants Treatment. Applied Sciences. 2022; 12(16):8352. https://doi.org/10.3390/app12168352
Chicago/Turabian StyleMoreira, Juliana Botelho, Thaisa Duarte Santos, Munise Zaparoli, Ana Claudia Araujo de Almeida, Jorge Alberto Vieira Costa, and Michele Greque de Morais. 2022. "An Overview of Nanofiltration and Nanoadsorption Technologies to Emerging Pollutants Treatment" Applied Sciences 12, no. 16: 8352. https://doi.org/10.3390/app12168352
APA StyleMoreira, J. B., Santos, T. D., Zaparoli, M., de Almeida, A. C. A., Costa, J. A. V., & de Morais, M. G. (2022). An Overview of Nanofiltration and Nanoadsorption Technologies to Emerging Pollutants Treatment. Applied Sciences, 12(16), 8352. https://doi.org/10.3390/app12168352