Droplet Formation and Impingement Dynamics of Low-Boiling Refrigerant on Solid Surfaces with Different Roughness under Atmospheric Pressure
Abstract
:1. Introduction
2. Experimental System and Measurement Methods
2.1. Experimental System
2.2. Parameters
3. Results and Discussions
3.1. The Influence of We
3.2. The Influence of Surface Roughness
3.3. Finger-like Disturbance Phenomenon
3.4. Empirical Formula of βmax
4. Conclusions
- (1)
- The shape of the droplet changed from a truncated spherical shape to a thin liquid layer and then spread into a liquid film with a thicker rim during the impinging period. Moreover, boiling and “finger disturbance” were observed. Boiling was noticed to be more obvious under higher We.
- (2)
- We had a significant effect on the dynamic behavior of droplet spreading. When 0 < τ < 0.1, the β-τ curves almost coincided. At τ = 0.1, the curves of low We had a lower slope and were separated from those of medium and high We. At about τ = 1, the curves at medium We separated from the curve at high We number. With the increase in We, the curve slope became larger, and τ to reach βmax became longer.
- (3)
- The droplet exhibited the Cassie state on the surface with low roughness, and βmax increased with the increase in roughness. At a certain threshold of Ra between 1.6 µm and 3.2 µm, the droplet underwent a Cassie–Wenzel transition, and βmax was significantly reduced due to larger energy dissipation.
- (4)
- The empirical formula of βmax on the carbon steel walls was proposed based on the regression analysis. The formula fitted well with experimental data on solid surfaces with different roughness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miao, J.; He, S.; Lu, Y.; Wu, Y.; Wu, X.; Zhang, G.; Gao, M.; Geng, Z.; Zhang, S. Comparison on cooling performance of pre-cooled natural draft dry cooling towers using nozzles spray and wet medium. Case Stud. Therm. Eng. 2021, 27, 101274. [Google Scholar] [CrossRef]
- Benther, J.D.; Pelaez-Restrepo, J.D.; Stanley, C.; Rosengarten, G. Heat transfer during multiple droplet impingement and spray cooling: Review and prospects for enhanced surfaces. Int. J. Heat Mass Transf. 2021, 178, 121587. [Google Scholar] [CrossRef]
- Xu, R.; Wang, G.; Jiang, P. Spray Cooling on Enhanced Surfaces: A Review of the Progress and Mechanisms. J. Electron. Packag. 2021, 144, 010802. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, S.; Zhang, C.; Ge, M.; Xie, L. Performance analysis of a solar photovoltaic power generation system with spray cooling. Case Stud. Therm. Eng. 2022, 29, 101723. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Zhang, W.-W.; Chen, H.; Hu, L. Spray cooling and flash evaporation cooling: The current development and application. Renew. Sustain. Energy Rev. 2016, 55, 614–628. [Google Scholar] [CrossRef]
- Zhou, Z.-F.; Lin, Y.-K.; Tang, H.-L.; Fang, Y.; Chen, B.; Wang, Y.-C. Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling. Int. J. Heat Mass Transf. 2019, 139, 1047–1055. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, Z.F.; Chen, B.; Bai, F.L.; Wang, G.X. Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology. Int. J. Refrig. 2015, 60, 206–216. [Google Scholar] [CrossRef]
- Nelson, J.S. Dynamic Epidermal Cooling During Pulsed Laser Treatment of Port-Wine Stain. Arch Derm. 1995, 131, 695–700. [Google Scholar] [CrossRef]
- Worthington, A.M. A Second Paper on the Forms Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate. Proc. R. Soc. Lond. 1876, 25, 261–272. [Google Scholar]
- Rioboo, R.; Tropea, C.; Marengo, M. Outcomes from a drop impact on solid surfaces. At. Sprays 2001, 11, 12. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z. Bouncing droplets on nonsuperhydrophobic surfaces. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2010, 82, 016308. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, R.; Attinger, D. Non-isothermal wetting during impact of millimeter size water drop on a flat substrate: Numerical investigation and comparison with high-speed visualization experiments. Int. J. Heat Fluid Flow 2008, 29, 1422–1435. [Google Scholar] [CrossRef]
- Bange, P.G.; Patil, N.D.; Bhardwaj, R. Impact Dynamics of a Droplet on a Heated Surface. In Proceedings of the International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, ON, Canada, 7–9 June 2018. [Google Scholar]
- Seo, J.; Lee, J.S.; Kim, H.Y.; Yoon, S.S. Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall. Exp. Therm. Fluid Sci. 2015, 61, 121–129. [Google Scholar] [CrossRef]
- Tian, J.M.; Chen, B. Dynamic behavior of non-evaporative droplet impact on a solid surface: Comparative study of R113, water, ethanol and acetone. Exp. Therm. Fluid Sci. 2019, 105, 153–164. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.W.; Nagel, S.R. Drop Splashing on a Dry Smooth Surface. Phys. Rev. Lett. 2005, 94, 184505. [Google Scholar] [CrossRef]
- Range, K.; Feuillebois, F. Influence of Surface Roughness on Liquid Drop Impact. J. Colloid Interface Sci. 1998, 203, 16–30. [Google Scholar] [CrossRef]
- Tang, C.L.; Qin, M.X.; Weng, X.Y.; Zhang, X.H.; Zhang, P.; Li, J.L.; Huang, Z.H. Dynamics of droplet impact on solid surface with different roughness—ScienceDirect. Int. J. Multiph. Flow 2017, 96, 56–69. [Google Scholar] [CrossRef]
- Kuhn, C.; Schweigert, D.; Kuntz, C.; Brnhorst, M. Single droplet impingement of urea water solution on heated porous surfaces. Int. J. Heat Mass Transf. 2021, 181, 121836. [Google Scholar] [CrossRef]
- Vaikuntanathan, V.; Sivakumar, D. Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture. Langmuir ACS J. Surf. Colloids 2016, 32, 2399–2409. [Google Scholar] [CrossRef]
- Vaikuntanathan, V.; Sivakumar, D. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces. Soft Matter 2014, 10, 2991–3002. [Google Scholar] [CrossRef]
- Lee, M.; Chang, Y.S.; Kim, H.-Y. Drop impact on microwetting patterned surfaces. Phys. Fluids 2010, 22, 072101. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.H.; Cho, M.; Lee, S.H. Dynamic contact angle and liquid displacement of a droplet impinging on heated textured surfaces—ScienceDirect. Exp. Therm. Fluid Sci. 2019, 101, 128–135. [Google Scholar] [CrossRef]
- Ogata, S.; Nakanishi, R. Effect of Surface Textures and Wettability on Droplet Impact on a Heated Surface. Processes 2021, 9, 350. [Google Scholar] [CrossRef]
- Lv, C.; Hao, P.; Zhang, X.; He, F. Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness. Appl. Phys. Lett. 2016, 108, 141602. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Hao, P.; He, F. Internal rupture and rapid bouncing of impacting drops induced by submillimeter-scale textures. Phys. Rev. E 2017, 95, 063104. [Google Scholar] [CrossRef]
- Liu, J. Droplet Impact Dynamics and Related Heat Transfer Phenomena; University of California: Riverside, CA, USA, 2008. [Google Scholar]
- Liu, J.; Franco, W.; Aguilar, G. The Effect of Roughness on the Impact Dynamics and Heat Transfer of Cryogen Droplets Impinging Onto Indented Skin Phantoms. In Proceedings of the ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, San Francisco, CA, USA, 17–22 July 2005; pp. 861–866. [Google Scholar]
- Liu, J.; Franco, W.; Aguilar, G. Effect of Surface Roughness on Single Cryogen Droplet Spreading. J. Fluids Eng. 2008, 130, 041402. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Hu, D. Experimental investigation on heat transfer characteristics of R1336mzz flash spray cooling. Appl. Therm. Eng. 2020, 174, 115277. [Google Scholar] [CrossRef]
- Fabian, D.; Jonas, F.; Florian, K.; Christopher, S.; Sebastian, E.; Christoph, W.; Hartmut, S. R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact. Appl. Energy 2021, 288, 116661. [Google Scholar]
- Kedzierski, M.A.; Lin, L. Pool boiling of HFO-1336mzz(Z) on a reentrant cavity surface—ScienceDirect. Int. J. Refrig. 2019, 104, 476–483. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Meng, X.; Wu, J. Measurement and Correlation of the Liquid Density and Viscosity of HFO-1336mzz(Z) (cis-1,1,1,4,4,4-Hexafluoro-2-butene) at High Pressure. J. Chem. Eng. Data 2018, 64, 395–403. [Google Scholar] [CrossRef]
- Harkins, W.D.; Brown, F.E. The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method. J. Am. Chem. Soc 1919, 41, 499–524. [Google Scholar] [CrossRef]
- Josserand, C.; Lemoyne, L.; Troeger, R.; Zaleski, S. Droplet impact on a dry surface: Triggering the splash with a small obstacle. J. Fluid Mech. 2005, 524, 47–56. [Google Scholar] [CrossRef]
- Aziz, S.D.; Chandra, S. Impact, recoil and splashing of molten metal droplets. Int. J. Heat Mass Transf. 2000, 43, 2841–2857. [Google Scholar] [CrossRef]
- Pasandideh-Fard, M.; Qiao, Y.M.; Chandra, S.; Mostaghimi, J. Capillary Effects during Droplet Impact on a Solid Surface. Phys. Fluids 1996, 8, 650–659. [Google Scholar] [CrossRef]
- Ukiwe, C.; Kwok, D.Y. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir ACS J. Surf. Colloids 2005, 21, 666–673. [Google Scholar] [CrossRef]
- Wildeman, S.; Visser, C.W.; Chao, S.; Lohse, D. On the spreading of impacting drops. J. Fluid Mech. 2017, 805, 636–655. [Google Scholar] [CrossRef]
- Rioboo, R.; Marengo, M.; Tropea, C. Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 2002, 33, 112–124. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Trans. Faraday Soc. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Bo, H.; Lee, J.; Patankar, N.A. Contact angle hysteresis on rough hydrophobic surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2016, 248, 101–104. [Google Scholar]
- Bartolo, D.; Bouamrirene, F.; Verneuil, É.; Buguin, A.; Silberzan, P.; Moulinet, S. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. EPL (Europhys. Lett.) 2006, 74, 299. [Google Scholar] [CrossRef]
- Deng, T.; Varanasi, K.K.; Ming, H.; Bhate, N.; Blohm, M. Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 2009, 94, 481. [Google Scholar] [CrossRef]
- Rioboo, R.; Voue, M.; Vaillant, A.; Coninck, J.D. Drop impact on porous superhydrophobic polymer surfaces. Langmuir ACS J. Surf. Colloids 2008, 24, 14074–14077. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E. Progress in understanding wetting transitions on rough surfaces. Adv. Colloid Interface Sci. 2015, 222, 92–103. [Google Scholar] [CrossRef]
- Allen, R.F. The role of surface tension in splashing. J. Colloid Interface Sci. 1975, 51, 350–351. [Google Scholar] [CrossRef]
- Stow, C.D.; Hadfield, M.G. An Experimental Investigation of Fluid Flow Resulting from the Impact of a Water Drop with an Unyielding Dry Surface. Proc. R. Soc. A Math. 1981, 373, 419–441. [Google Scholar]
- Roisman, I.V. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 2009, 21, 296. [Google Scholar] [CrossRef]
- Scheller, B.L.; Bousfield, D.W. Newtonian drop impact with a solid surface. Aiche J. 2010, 41, 1357–1367. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-Y.; Zhu, D.-Q.; Xing, H.-J.; Zhao, Q.; Zhou, Z.-F.; Chen, B. Droplet Formation and Impingement Dynamics of Low-Boiling Refrigerant on Solid Surfaces with Different Roughness under Atmospheric Pressure. Appl. Sci. 2022, 12, 8549. https://doi.org/10.3390/app12178549
Chen S-Y, Zhu D-Q, Xing H-J, Zhao Q, Zhou Z-F, Chen B. Droplet Formation and Impingement Dynamics of Low-Boiling Refrigerant on Solid Surfaces with Different Roughness under Atmospheric Pressure. Applied Sciences. 2022; 12(17):8549. https://doi.org/10.3390/app12178549
Chicago/Turabian StyleChen, Shu-Yan, Dong-Qing Zhu, Hong-Jie Xing, Qin Zhao, Zhi-Fu Zhou, and Bin Chen. 2022. "Droplet Formation and Impingement Dynamics of Low-Boiling Refrigerant on Solid Surfaces with Different Roughness under Atmospheric Pressure" Applied Sciences 12, no. 17: 8549. https://doi.org/10.3390/app12178549
APA StyleChen, S. -Y., Zhu, D. -Q., Xing, H. -J., Zhao, Q., Zhou, Z. -F., & Chen, B. (2022). Droplet Formation and Impingement Dynamics of Low-Boiling Refrigerant on Solid Surfaces with Different Roughness under Atmospheric Pressure. Applied Sciences, 12(17), 8549. https://doi.org/10.3390/app12178549