Buckling Induced Strongly Nonlinear Vibration of Supercritical Axially Moving Beam
Abstract
:1. Introduction
2. Governing Equations and Solutions
- (1)
- Symmetric configuration:
- (2)
- Anti-symmetric configuration:
3. Principle of Homotopy Analysis
4. Application of the Homotopy Analysis Method
5. Numerical Comparison
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Simple Supports | Fixed Supports | |
---|---|---|
Bnk | ||
Bnn | 0 | 0 |
Cnk | 0 | |
Cnn |
References
- Wickert, J. Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 1992, 27, 503–517. [Google Scholar] [CrossRef]
- Parker, R.G. Supercritical speed stability of the trivial equilibrium of an axially-moving string on an elastic foundation. J. Sound Vib. 1999, 221, 205–219. [Google Scholar] [CrossRef]
- Öz, H.; Pakdemirli, M. Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 1999, 227, 239–257. [Google Scholar] [CrossRef]
- Zhu, W.; Mote, C. Free And Forced Response Of An Axially Moving String Transporting A Damped Linear Oscillator. J. Sound Vib. 1994, 177, 591–610. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Tang, Y.-Q. Combination and principal parametric resonances of axially accelerating viscoelastic beams: Recognition of longitudinally varying tensions. J. Sound Vib. 2011, 330, 5598–5614. [Google Scholar] [CrossRef]
- Mote, C. A study of band saw vibrations. J. Frankl. Inst. 1965, 279, 430–444. [Google Scholar] [CrossRef]
- Wickert, J.A.; Mote, C.D. Classical Vibration Analysis of Axially Moving Continua. J. Appl. Mech. 1990, 57, 738–744. [Google Scholar] [CrossRef]
- Lin, W.; Qiao, N. Vibration and stability of an axially moving beam immersed in fluid. Int. J. Solids Struct. 2008, 45, 1445–1457. [Google Scholar] [CrossRef]
- Chen, L.Q.; Yang, X.D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports. Eur. J. Mech.-A/Solids 2006, 25, 996–1008. [Google Scholar] [CrossRef]
- Chen, L.-Q. Analysis and Control of Transverse Vibrations of Axially Moving Strings. Appl. Mech. Rev. 2005, 58, 91–116. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Zhao, W.-J.; Zu, J.W. Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J. Sound Vib. 2004, 278, 861–871. [Google Scholar] [CrossRef]
- Fung, R.-F.; Huang, J.-S.; Chen, Y.-C. The transient amplitude of the viscoelastic travelling string: An integral constitutive law. J. Sound Vib. 1997, 201, 153–167. [Google Scholar] [CrossRef]
- Öz, H.; Pakdemirli, M.; Özkaya, E. Transition behaviour from string to beam for an axially accelerating material. J. Sound Vib. 1998, 215, 571–576. [Google Scholar] [CrossRef]
- Pakdemirli, M.; Ulsoy, A.G. Stability analysis of an axially accelerating string. J. Sound Vib. 1997, 203, 815–832. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Lu, K.; Yue, Z. Flow-induced buckling statics and dynamics of imperfect pipes. Arch. Appl. Mech. 2021, 91, 4553–4569. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Lu, K.; Yue, Z. Three-dimensional parametric resonance of fluid-conveying pipes in the pre-buckling and post-buckling states. Int. J. Press. Vessel. Pip. 2021, 189, 104287. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Yang, X.-D. Steady-state response of axially moving viscoelastic beams with pulsating speed: Comparison of two nonlinear models. Int. J. Solids Struct. 2005, 42, 37–50. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Yang, X.-D. Nonlinear free transverse vibration of an axially moving beam: Comparison of two models. J. Sound Vib. 2007, 299, 348–354. [Google Scholar] [CrossRef]
- Ghayesh, M.H. Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 2011, 53, 1022–1037. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Amabili, M. Three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam. Arch. Appl. Mech. 2013, 83, 591–604. [Google Scholar] [CrossRef]
- Ghayesh, M.H. Subharmonic dynamics of an axially accelerating beam. Arch. Appl. Mech. 2012, 82, 1169–1181. [Google Scholar] [CrossRef]
- Hwang, S.-J.; Perkins, N. Supercritical stability of an axially moving beam part I: Model and equilibrium analysis. J. Sound Vib. 1992, 154, 381–396. [Google Scholar] [CrossRef]
- Hwang, S.-J.; Perkins, N. Supercritical stability of an axially moving beam part II: Vibration and stability analyses. J. Sound Vib. 1992, 154, 397–409. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Amabili, M. Nonlinear dynamics of axially moving viscoelastic beams over the buckled state. Comput. Struct. 2012, 112–113, 406–421. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Kafiabad, H.A.; Reid, T. Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 2012, 49, 227–243. [Google Scholar] [CrossRef]
- Ding, H.; Chen, L.-Q. Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 2010, 329, 3484–3494. [Google Scholar] [CrossRef]
- Ding, H.; Chen, L.-Q. Equilibria of axially moving beams in the supercritical regime. Arch. Appl. Mech. 2011, 81, 51–64. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, G.-C.; Chen, L.-Q. Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions. Mech. Res. Commun. 2011, 38, 52–56. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, G.; Chen, L. Supercritical vibration of nonlinear coupled moving beams based on discrete Fourier transform. Int. J. Non-Linear Mech. 2012, 47, 1095–1104. [Google Scholar] [CrossRef]
- Zhang, G.-C.; Ding, H.; Chen, L.-Q.; Yang, S.-P. Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speeds. J. Sound Vib. 2012, 331, 1612–1623. [Google Scholar] [CrossRef]
- Yang, T.Z.; Yang, X.D. Exact solution of supercritical axially moving beams: Symmetric and anti-symmetric configurations. Arch. Appl. Mech. 2013, in press. [Google Scholar] [CrossRef]
- Ding, H.; Chen, L.-Q. Natural frequencies of nonlinear vibration of axially moving beams. Nonlinear Dyn. 2010, 63, 125–134. [Google Scholar] [CrossRef]
- Liao, S.; Sherif, S. Beyond Perturbation: Introduction to the Homotopy Analysis Method; Chapman and Hall/CRC: New York, NY, USA, 2003; p. 336. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Yang, T. Buckling Induced Strongly Nonlinear Vibration of Supercritical Axially Moving Beam. Appl. Sci. 2022, 12, 8555. https://doi.org/10.3390/app12178555
Jin Y, Yang T. Buckling Induced Strongly Nonlinear Vibration of Supercritical Axially Moving Beam. Applied Sciences. 2022; 12(17):8555. https://doi.org/10.3390/app12178555
Chicago/Turabian StyleJin, Yang, and Tianzhi Yang. 2022. "Buckling Induced Strongly Nonlinear Vibration of Supercritical Axially Moving Beam" Applied Sciences 12, no. 17: 8555. https://doi.org/10.3390/app12178555
APA StyleJin, Y., & Yang, T. (2022). Buckling Induced Strongly Nonlinear Vibration of Supercritical Axially Moving Beam. Applied Sciences, 12(17), 8555. https://doi.org/10.3390/app12178555