Critical Review on Key Approaches to Enhance Synthesis and Production of Steviol Glycosides: A Blueprint for Zero-Calorie Sweetener
Abstract
:1. Introduction
2. Stevia rebaudiana Morphology and Biology
3. Steviol Glycosides Chemical Diversity and Biosynthesis
4. Physical and Chemical Treatments to Improve SvGls Production
4.1. Alteration in Light and Photoperiod
4.2. Salt Stress to Enhance SvGls Production
4.3. Elicitors to Enhance Synthesis and Gene Expression of SvGls
5. Breeding Approaches to Enhance Steviol Production
6. Biotechnological Approaches to Increase Steviol Glycosides Production
6.1. Induction of Polyploidy
6.2. Conventional Propagation and In Vitro Culture Technique
6.3. Transformation Technique to Enhance SvGls Production
6.4. Transcriptomic Profiling of Genes Involved in Steviol Glycosides Synthesis
6.5. Metabolic Engineering of Microorganisms
7. Extraction and Purification Methods for SvGls Production
8. Commercialization Status of Stevia
9. Summaries
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Ashwell, M. Stevia, Nature’s Zero-Calorie Sustainable Sweetener: A New Player in the Fight Against Obesity. Nutr. Today 2015, 50, 129–134. [Google Scholar] [CrossRef]
- Gerwig, G.J.; Te Poele, E.M.; Dijkhuizen, L.; Kamerling, J.P. Stevia glycosides: Chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality. Adv. Carbohydr. Chem. Biochem. 2016, 73, 1–72. [Google Scholar] [PubMed]
- Carakostas, M.C.; Curry, L.; Boileau, A.; Brusick, D. Overview: The history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem. Toxicol. 2008, 46, S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Ceunen, S.; Geuns, J.M. Steviol glycosides: Chemical diversity, metabolism, and function. J. Nat. Prod. 2013, 76, 1201–1228. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, B.A.; Carakostas, M.C.; Moore, N.H.; Poulos, S.P.; Renwick, A.G. Biological fate of low-calorie sweeteners. Nutr. Rev. 2016, 74, 670–689. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef]
- Libik-Konieczny, M.; Capecka, E.; Tuleja, M.; Konieczny, R. Synthesis and production of steviol glycosides: Recent research trends and perspectives. Appl. Microbiol. Biotechnol. 2021, 105, 3883–3900. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P.S. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–27. [Google Scholar] [CrossRef]
- Lee, S.G.; Salomon, E.; Yu, O.; Jez, J.M. Molecular basis for branched steviol glucoside biosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 13131–13136. [Google Scholar] [CrossRef]
- Tao, R.; Cho, S. Consumer-based sensory characterization of steviol glycosides (rebaudioside A, D, and M). Foods 2020, 9, 1026. [Google Scholar] [CrossRef]
- Chappell, G.; Heintz, M.; Borghoff, S.; Doepker, C.; Wikoff, D. Lack of potential carcinogenicity for steviol glycosides-Systematic evaluation and integration of mechanistic data into the totality of evidence. Food Chem. Toxicol. 2021, 150, 112045. [Google Scholar]
- Tavarini, S.; Passera, B.; Angelini, L.G. Crop and steviol glycoside improvement in stevia by breeding. In Steviol Glycosides: Cultivation, Processing, Analysis and Applications in Food; Royal Society of Chemistry: London, UK, 2018; pp. 1–31. [Google Scholar]
- Basharat, S.; Huang, Z.; Gong, M.; Lv, X.; Ahmed, A.; Hussain, I.; Li, J.; Du, G.; Liu, L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin. J. Chem. Eng. 2021, 30, 92–104. [Google Scholar] [CrossRef]
- Ramesh, K.; Singh, V.; Megeji, N.W. Cultivation of stevia [Stevia rebaudiana (Bert.) Bertoni]: A comprehensive review. Adv. Agron. 2006, 89, 137–177. [Google Scholar]
- Gantait, S.; Das, A.; Banerjee, J. Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia. Sugar Tech 2018, 20, 1–10. [Google Scholar]
- Bernal, J.; Mendiola, J.; Ibáñez, E.; Cifuentes, A. Advanced analysis of nutraceuticals. J. Pharm. Biomed. Anal. 2011, 55, 758–774. [Google Scholar] [CrossRef]
- Zhou, X.; Gong, M.; Lv, X.; Liu, Y.; Li, J.; Du, G.; Liu, L. Metabolic engineering for the synthesis of steviol glycosides: Current status and future prospects. Appl. Microbiol. Biotechnol. 2021, 105, 5367–5381. [Google Scholar] [CrossRef]
- Mora, M.R.; Dando, R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1554–1583. [Google Scholar] [CrossRef]
- Muñoz-Labrador, A.; Azcarate, S.; Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Galindo-Iranzo, P.; Kolida, S.; Methven, L.; Rastall, R.A.; Moreno, F.J.; Hernandez-Hernandez, O. Transglycosylation of Steviol Glycosides and Rebaudioside A: Synthesis Optimization, Structural Analysis and Sensory Profiles. Foods 2020, 9, 1753. [Google Scholar] [CrossRef]
- Xu, C.; Wei, H.; Movahedi, A.; Sun, W.; Ma, X.; Li, D.; Yin, T.; Zhuge, Q. Evaluation, characterization, expression profiling, and functional analysis of DXS and DXR genes of Populus trichocarpa. Plant Physiol. Biochem. 2019, 142, 94–105. [Google Scholar] [CrossRef]
- Libik-Konieczny, M.; Michalec-Warzecha, Ż.; Dziurka, M.; Zastawny, O.; Konieczny, R.; Rozpądek, P.; Pistelli, L. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl. Microbiol. Biotechnol. 2020, 104, 5929–5941. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Lyu, C.; Chen, J.; Xiao, R.; Chen, J.; Yang, Y.; Zhang, H.; Hou, K.; Wu, W. Characterizing glycosyltransferases by a combination of sequencing platforms applied to the leaf tissues of Stevia rebaudiana. BMC Genom. 2020, 21, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Seigler, D.S. Sesquiterpenes. In Plant Secondary Metabolism; Springer: Berlin/Heidelberg, Germany, 1998; pp. 367–397. [Google Scholar]
- Chalker-Scott, L.; Fuchigami, L. The role of phenolic compounds in plant stress responses. In Low Temperature Stress Physiology in Crops; CRC Press: Boca Raton, FL, USA, 2018; pp. 67–80. [Google Scholar]
- Hernández, K.V.; Moreno-Romero, J.; de la Torre, M.H.; Manríquez, C.P.; Leal, D.R.; Martínez-Garcia, J.F. Effect of light intensity on steviol glycosides production in leaves of Stevia rebaudiana plants. Phytochemistry 2022, 194, 113027. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Avilez, J.A.; Jarma-Orozco, A.; Pompelli, M.F. Stevia rebaudiana Bertoni: The Interaction of Night Interruption on Gas Exchange, Flowering Delay, and Steviol Glycosides Synthesis. Horticulturae 2021, 7, 543. [Google Scholar] [CrossRef]
- Yoneda, Y.; Nakashima, H.; Miyasaka, J.; Ohdoi, K.; Shimizu, H. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry 2017, 137, 57–65. [Google Scholar] [CrossRef]
- Melviana, A.C.; Esyanti, R.R.; Setyobudi, R.H.; Mel, M.; Adinurani, P.G.; Burlakovs, J. Gene expression related to steviol glycoside synthesis produced in Stevia rebaudiana (Bert.) shoot culture induced with high far-red LED light in TIS RITA® bioreactor system. Sarhad J. Agric. 2021, 37, 1–8. [Google Scholar] [CrossRef]
- Shahverdi, M.A.; Omidi, H.; Tabatabaei, S.J. Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J. Saudi Soc. Agric. Sci. 2019, 18, 355–360. [Google Scholar] [CrossRef]
- Gerami, M.; Majidian, P.; Ghorbanpour, A.; Alipour, Z. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol. Mol. Biol. Plants 2020, 26, 965–974. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef]
- Rasouli, D.; Maleki, B.; Jafary, H.; Bahari, A. Expression analysis of genes involed in steviol glycosides biosynthesis pathway in Stevia rebaudiana Bertoni under biotic and abiotic elicitors. Iran. Genet. Soc. 2018, 13, 247–257. [Google Scholar]
- Díaz-Gutiérrez, C.; Hurtado, A.; Ortíz, A.; Poschenrieder, C.; Arroyave, C.; Peláez, C. Increase in steviol glycosides production from Stevia rebaudiana Bertoni under organo-mineral fertilization. Ind. Crops Prod. 2020, 147, 112220. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, T.; Xu, X.; Yang, Y.; Tong, H.; Mur, L.A.J.; Yuan, H. Transcriptomic Characterization of Nitrate-Enhanced Stevioside Glycoside Synthesis in Stevia (Stevia rebaudiana) Bertoni. Int. J. Mol. Sci. 2021, 22, 8549. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Hernández, M.C.; Alvarado-Mariana, A.; Aguirre-Becerra, H.; Soto-Zarazúa, G.M.; Feregrino-Pérez, A.A.; Guevara-Gonzalez, R.G. Effect of the application of elicitors on the amount of steviol glycosides in Stevia rebaudiana Bertoni. In Proceedings of the 2018 XIV International Engineering Congress (CONIIN), Queretaro, Mexico, 14–19 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–3. [Google Scholar]
- Yoneda, Y.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Effect of treatment with gibberellin, gibberellin biosynthesis inhibitor, and auxin on steviol glycoside content in Stevia rebaudiana Bertoni. Sugar Tech 2018, 20, 482–491. [Google Scholar] [CrossRef]
- Omidi, H.; Bostani, A.; Gorzi, A. Effects of Chemical Treatments (Iron, Zinc and Salicylic Acid) and Soil Water Potential on Steviol Glycosides of Stevia (Stevia rebaudiana Bertoni.). Iran. J. Chem. Chem. Eng. 2019, 39, 4. [Google Scholar]
- Sharma, S.; Walia, S.; Singh, B.; Kumar, R. Comprehensive review on agro technologies of low-calorie natural sweetener stevia (Stevia rebaudiana Bertoni): A boon to diabetic patients. J. Sci. Food Agric. 2016, 96, 1867–1879. [Google Scholar] [CrossRef] [PubMed]
- Wölwer-Rieck, U. Steviol Glycosides: Cultivation, Processing, Analysis and Applications in Food; Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Talei, D.; Nekouei, M.K.; Mardi, M.; Kadkhodaei, S. Improving productivity of steviol glycosides in Stevia rebaudiana via induced polyploidy. J. Crop Sci. Biotechnol. 2020, 23, 301–309. [Google Scholar] [CrossRef]
- Hegde, S.N.; Rameshsing, C.N.; Vasundhara, M. Characterization of Stevia rebaudiana Bertoni polyploids for growth and quality. Med. Plants-Int. J. Phytomedicines Relat. Ind. 2015, 7, 188–195. [Google Scholar]
- Rameshsing, C.N.; Hegde, S.N.; Vasundhara, M. Enhancement of Steviol Glycosides in Stevia (Stevia rebaudiana Bertoni) Through Induction of Polyploidy. Curr. Trends Biotechnol. Pharm. 2015, 9, 141–146. [Google Scholar]
- Xiang, Z.-X.; Tang, X.-L.; Liu, W.-H.; Song, C.-N. A comparative morphological and transcriptomic study on autotetraploid Stevia rebaudiana (bertoni) and its diploid. Plant Physiol. Biochem. 2019, 143, 154–164. [Google Scholar] [CrossRef]
- Mahdi, S.A.; Meena, C.M.; Tholakabavi, A. Induction of Genetic Variability by Colchicine Treatment in Stevia rebaudiana Bertoni. Al-Qadisiyah J. Pure Sci. 2018, 23, 161–173. [Google Scholar]
- Yücesan, B.; Mohammed, A.; Büyükgöçmen, R.; Altuğ, C.; Kavas, Ö.; Gürel, S.; Gürel, E.J.S.H. In vitro and ex vitro propagation of Stevia rebaudiana Bertoni with high Rebaudioside-A content—A commercial scale application. Sci. Hortic. 2016, 203, 20–28. [Google Scholar] [CrossRef]
- Yesmin, S.J.P.T.C.; Biotechnology. In vitro micropropagation of Stevia rebaudiana Bertoni. Bangladesh J. Online 2019, 29, 277–284. [Google Scholar] [CrossRef]
- Bayraktar, M.; Naziri, E.; Karabey, F.; Akgun, I.H.; Bedir, E.; Bärbel, R.-O.; Gürel, A. Enhancement of stevioside production by using biotechnological approach in in vitro culture of Stevia rebaudiana. Int. J. Second. Metab. 2018, 5, 362–374. [Google Scholar] [CrossRef]
- Esmaeili, F.; Ghaheri, M.; Kahrizi, D.; Mansouri, M.; Safavi, S.M.; Ghorbani, T.; Muhammadi, S.; Rahmanian, E.; Vaziri, S. Effects of various glutamine concentrations on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni. Cell. Mol. Biol. 2018, 64, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, D.; Werbrouck, S.; Maleki, B.; Jafary, H.; Schurdi-Levraud, V. Elicitor-induced in vitro shoot multiplication and steviol glycosides production in Stevia rebaudiana. S. Afr. J. Bot. 2021, 137, 265–271. [Google Scholar] [CrossRef]
- Lucho, S.R.; do Amaral, M.N.; Auler, P.A.; Bianchi, V.J.; Ferrer, M.Á.; Calderón, A.A.; Braga, E.J.B. Salt stress-induced changes in in vitro cultured Stevia rebaudiana Bertoni: Effect on metabolite contents, antioxidant capacity and expression of steviol glycosides-related biosynthetic genes. J. Plant Growth Regul. 2019, 38, 1341–1353. [Google Scholar] [CrossRef]
- Tamura, Y.; Nakamura, S.; Fukui, H.; Tabata, M. Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides. Plant Cell Rep. 1984, 3, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Javed, R.; Usman, M.; Yücesan, B.; Zia, M.; Gürel, E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem. 2017, 110, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.A.; Javed, R.; Adeel, M.; Rizwan, M.; Ao, Q.; Yang, Y. Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candyleaf (Stevia rebaudiana). Molecules 2020, 25, 1356. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Ali, A.; Mohammad, S.; Ali, H.; Khan, T.; Mashwani, Z.-U.-R.; Jan, A.; Ahmad, P. Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell Tissue Organ Cult. 2020, 143, 121–130. [Google Scholar] [CrossRef]
- Golkar, P.; Moradi, M.; Garousi, G.A. Elicitation of stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech 2019, 21, 569–577. [Google Scholar] [CrossRef]
- Mehravaran, L.; Omidi, M.; Naghavi, M.; Fakheri, B. Effect of some elicitors on morphophysiological, biochemical and molecular traits of Stevia. Russ. J. Plant Physiol. 2021, 68, 347–355. [Google Scholar] [CrossRef]
- Ghaheri, M.; Kahrizi, D.; Bahrami, G.; Mohammadi-Motlagh, H.-R. Study of gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni under various mannitol concentrations. Mol. Biol. Rep. 2019, 46, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Sharma, S.; Saxena, S. Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl. Biochem. Biotechnol. 2015, 176, 863–874. [Google Scholar] [CrossRef]
- Ahmad, A.; Ali, H.; Khan, H.; Begam, A.; Khan, S.; Ali, S.S.; Ahmad, N.; Fazal, H.; Ali, M.; Hano, C. Effect of gibberellic acid on production of biomass, polyphenolics and steviol glycosides in adventitious root cultures of Stevia rebaudiana (Bert.). Plants 2020, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, N.; Reshetnyak, O.; Bondareva, T.; Il’in, M.; Nosov, A. Impact of cultivation factors in vitro on the growth and the biosynthesis of steviol glycosides in Stevia rebaudiana cell cultures. Physiol. Mol. Biol. Plants 2019, 25, 1091–1096. [Google Scholar] [CrossRef]
- Simlat, M.; Szewczyk, A.; Ptak, A. Melatonin promotes seed germination under salinity and enhances the biosynthesis of steviol glycosides in Stevia rebaudiana Bertoni leaves. PLoS ONE 2020, 15, e0230755. [Google Scholar] [CrossRef]
- Saptari, R.T.; Esyanti, R.R.; Putranto, R.A. Daminozide Enhances Vigor and Steviol Glycoside Yield of Stevia (Stevia rebaudiana Bert.) Propagated in the Temporary Immersion Bioreactor. Plant Cell Tissue Organ Cult. 2022, 149, 257–268. [Google Scholar] [CrossRef]
- Guleria, P.; Yadav, S.K. Agrobacterium mediated transient gene silencing (AMTS) in Stevia rebaudiana: Insights into steviol glycoside biosynthesis pathway. PLoS ONE 2013, 8, e74731. [Google Scholar]
- Zheng, J.; Zhuang, Y.; Mao, H.-Z.; Jang, I.-C. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants. BMC Plant Biol. 2019, 19, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.; An, S.; Hu, J.; Lin, Z.; Liu, X.; Bao, H.; Chen, R. Induction, identification and characterization of polyploidy in Stevia rebaudiana Bertoni. Plant Biotechnol. 2018, 35, 81–86. [Google Scholar] [CrossRef]
- Sanchéz-Cordova, Á.d.J.; Capataz-Tafur, J.; Barrera-Figueroa, B.E.; López-Torres, A.; Sanchez-Ocampo, P.M.; García-López, E.; Huerta-Heredia, A.A. Agrobacterium rhizogenes-mediated transformation enhances steviol glycosides production and growth in Stevia rebaudiana plantlets. Sugar Tech 2019, 21, 398–406. [Google Scholar] [CrossRef]
- Lange, B.M.; Wildung, M.R.; McCaskill, D.; Croteau, R. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA 1998, 95, 2100–2104. [Google Scholar] [CrossRef] [PubMed]
- Totté, N.; Ende, W.V.d.; Van Damme, E.J.; Compernolle, F.; Baboeuf, I.; Geuns, J.M. Cloning and heterologous expression of early genes in gibberellin and steviol biosynthesis via the methylerythritol phosphate pathway in Stevia rebaudiana. Can. J. Bot. 2003, 81, 517–522. [Google Scholar] [CrossRef]
- Lange, B.M.; Croteau, R. Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: Cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch. Biochem. Biophys. 1999, 365, 170–174. [Google Scholar] [CrossRef]
- Hsieh, M.-H.; Goodman, H.M. Functional evidence for the involvement of Arabidopsis IspF homolog in the nonmevalonate pathway of plastid isoprenoid biosynthesis. Planta 2006, 223, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Rohdich, F.; Wungsintaweekul, J.; Eisenreich, W.; Richter, G.; Schuhr, C.A.; Hecht, S.; Zenk, M.H.; Bacher, A. Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-D-erythritol synthase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2000, 97, 6451–6456. [Google Scholar] [CrossRef]
- Querol, J.; Campos, N.; Imperial, S.; Boronat, A.; Rodríguez-Concepción, M. Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett. 2002, 514, 343–346. [Google Scholar] [CrossRef]
- Rohdich, F.; Wungsintaweekul, J.; Lüttgen, H.; Fischer, M.; Eisenreich, W.; Schuhr, C.A.; Fellermeier, M.; Schramek, N.; Zenk, M.H.; Bacher, A. Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from tomato. Proc. Natl. Acad. Sci. USA 2000, 97, 8251–8256. [Google Scholar] [CrossRef]
- Richman, A.S.; Gijzen, M.; Starratt, A.N.; Yang, Z.; Brandle, J.E. Diterpene synthesis in Stevia rebaudiana: Recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. Plant J. 1999, 19, 411–421. [Google Scholar] [CrossRef]
- Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev. 2006, 106, 2875–2911. [Google Scholar] [CrossRef]
- Nomura, T.; Magome, H.; Hanada, A.; Takeda-Kamiya, N.; Mander, L.N.; Kamiya, Y.; Yamaguchi, S. Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes. Plant Cell Physiol. 2013, 54, 1837–1851. [Google Scholar] [CrossRef] [PubMed]
- Brandle, J.; Telmer, P. Steviol glycoside biosynthesis. Phytochemistry 2007, 68, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Petit, E.; Berger, M.; Camborde, L.; Vallejo, V.; Daydé, J.; Jacques, A. Development of screening methods for functional characterization of UGTs from Stevia rebaudiana. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Xiong, Z.; Wang, Y. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli. Cell Res. 2016, 26, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, Z.; Sun, J.; Cui, X.; Liu, Y. Research progress and future development trends in medicinal plant transcriptomics. Front. Plant Sci. 2021, 12, 691838. [Google Scholar] [CrossRef] [PubMed]
- Samsulrizal, N.H.; Khadzran, K.S.; Sundram, T.S.M.; Zainuddin, Z.; Shaarani, S.H.N.; Azmi, N.S.A.; Harun, S. Transcriptome profiling of Stevia rebaudiana MS007 revealed genes involved in flower development. Turk. J. Biol. 2021, 45, 314–322. [Google Scholar] [CrossRef]
- Chen, J.; Hou, K.; Qin, P.; Liu, H.; Yi, B.; Yang, W.; Wu, W. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genom. 2014, 15, 1–11. [Google Scholar] [CrossRef]
- Singh, G.; Singh, G.; Singh, P.; Parmar, R.; Paul, N.; Vashist, R.; Swarnkar, M.K.; Kumar, A.; Singh, S.; Singh, A.K. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Jia, X.; Zhu, L.; Yin, H. Comparative transcriptomic of Stevia rebaudiana provides insight into rebaudioside D and rebaudioside M biosynthesis. Plant Physiol. Biochem. 2021, 167, 541–549. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, X.; Zhang, T.; Yang, Y.; Tong, H.; Yuan, H. Comparative transcriptome analysis provides insights into steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) leaves under nitrogen deficiency. Plant Cell Rep. 2021, 40, 1709–1722. [Google Scholar] [CrossRef]
- Khayam Nekoui, M.; Moazam Jazi, M.; Mardi, M.; Kadkhodaei, S. Development of SSR Markers Associated with Biosynthesis Pathway of Steviol Glycosides in Stevia through De Novo Transcriptome Assembly. Modares J. Biotechnol. 2020, 11, 185–191. [Google Scholar]
- Pang, C.; Yin, X.; Zhang, G.; Liu, S.; Zhou, J.; Li, J.; Du, G. Current progress and prospects of enzyme technologies in future foods. Syst. Microbiol. Biomanuf. 2021, 1, 24–32. [Google Scholar] [CrossRef]
- Moon, J.H.; Lee, K.; Lee, J.H.; Lee, P.C. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli. Microb. Cell Factories 2020, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gold, N.D.; Fossati, E.; Hansen, C.C.; DiFalco, M.; Douchin, V.; Martin, V.J. A combinatorial approach to study cytochrome P450 enzymes for de novo production of steviol glucosides in baker’s yeast. ACS Synth. Biol. 2018, 7, 2918–2929. [Google Scholar] [CrossRef]
- Ko, S.C.; Woo, H.M. Biosynthesis of the calorie-free sweetener precursor ent-kaurenoic acid from CO2 using engineered cyanobacteria. ACS Synth. Biol. 2020, 9, 2979–2985. [Google Scholar] [CrossRef]
- Chen, L.; Sun, P.; Zhou, F.; Li, Y.; Chen, K.; Jia, H.; Yan, M.; Gong, D.; Ouyang, P. Synthesis of rebaudioside D, using glycosyltransferase UGTSL2 and in situ UDP-glucose regeneration. Food Chem. 2018, 259, 286–291. [Google Scholar] [CrossRef]
- Chen, L.; Cai, R.; Weng, J.; Li, Y.; Jia, H.; Chen, K.; Yan, M.; Ouyang, P. Production of rebaudioside D from stevioside using a UGTSL2 Asn358Phe mutant in a multi-enzyme system. Microb. Biotechnol. 2020, 13, 974–983. [Google Scholar] [CrossRef]
- Zerva, A.; Chorozian, K.; Kritikou, A.S.; Thomaidis, N.S.; Topakas, E. β-Glucosidase and β-Galactosidase-Mediated Transglycosylation of Steviol Glycosides Utilizing Industrial Byproducts. Front. Bioeng. Biotechnol. 2021, 9, 444. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, J.; Ma, S.; Huang, T.; Ma, Y.; Liu, W.; Liu, W.; Liu, Z.; Song, H. Heterologous expression of EUGT11 from Oryza sativa in Pichia pastoris for highly efficient one-pot production of rebaudioside D from rebaudioside A. Int. J. Biol. Macromol. 2020, 163, 1669–1676. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wang, Y.; Chen, L.; Yan, M.; Chen, K.; Xu, L.; Ouyang, P.J.A.B. Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2016, 178, 1586–1598. [Google Scholar] [CrossRef]
- Shu, W.; Zheng, H.; Fu, X.; Zhen, J.; Tan, M.; Xu, J.; Zhao, X.; Yang, S.; Song, H.; Ma, Y.J.I. Enhanced heterologous production of glycosyltransferase UGT76G1 by co-expression of endogenous prpD and malK in Escherichia coli and its transglycosylation application in production of rebaudioside. Int. J. Mol. Sci. 2020, 21, 5752. [Google Scholar] [CrossRef] [PubMed]
- Gaweł-Bęben, K.; Bujak, T.; Nizioł-Łukaszewska, Z.; Antosiewicz, B.; Jakubczyk, A.; Karaś, M.; Rybczyńska, K. Stevia rebaudiana Bert. leaf extracts as a multifunctional source of natural antioxidants. Molecules 2015, 20, 5468–5486. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Vitulano, M.; Andolfi, A.; DellaGreca, M.; Conte, E.; Ciaravolo, M.; Naviglio, D. Rapid Solid-Liquid Dynamic Extraction (RSLDE): A new rapid and greener method for extracting two steviol glycosides (stevioside and rebaudioside A) from stevia leaves. Plant Foods Hum. Nutr. 2017, 72, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Fíla, V. Membrane-based technologies as an emerging tool for separating high-added-value compounds from natural products. Trends Food Sci. Technol. 2018, 82, 8–20. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Fíla, V.; Rodríguez-Romero, V.M.; Yáñez-Fernández, J. Water production from food processing wastewaters using integrated membrane systems: A sustainable approach. Tecnol. Cienc. Agua 2017, 8, 129–136. [Google Scholar] [CrossRef]
- Savita, S.; Sheela, K.; Sunanda, S.; Shankar, A.; Ramakrishna, P. Stevia rebaudiana—A functional component for food industry. J. Hum. Ecol. 2004, 15, 261–264. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, J.; Moguel-Ordoñez, Y.; Matus-Basto, A.; Segura-Campos, M. Antidiabetic and antioxidant activity of Stevia rebaudiana extracts (Var. Morita) and their incorporation into a potential functional bread. J. Food Sci. Technol. 2015, 52, 7894–7903. [Google Scholar] [CrossRef]
- Aguilar, F.; Charrondiere, U.R.; Dusemund, B.; Galtier, P.; Gilbert, J.; Gott, D.M.; Grilli, S.; Gürtler, R.; König, J.; Lambré, C.; et al. Scientific opinion on the safety of steviol glycosides for the proposed uses as a food additive. EFSA J. 2010, 8, 1537. [Google Scholar]
- FAO. FAO Fact Sheet; FAO: Rome, Italy, 2008. [Google Scholar]
- Reports, V. Global Stevia Market was 895 Million US$ in 2018 and is Expected to Grow at a CAGR of 3.84% Between 2019 and 2025. 2019. Available online: https://www.prnewswire.com/news-releases/global-stevia-market-was-895-million-us-in-2018-and-is-expected-to-grow-at-a-cagr-of-3-84-between-2019-and-2025---valuates-reports-300833603.html (accessed on 17 April 2019).
- Geller, M. Coke to sell ‘natural’ mid-calorie cola in Argentina. Reuters, 26 June 2013; p. 1. [Google Scholar]
- FDA. FDA Approves 2 New Sweeteners. New York Times. 13 December 2008. Available online: https://www.nytimes.com/2008/12/18/business/18sweet.html (accessed on 17 December 2008).
- Wayzata MN, H.N. Cargill-DSM Joint Venture Avansya Starts Commercial-Scale Production of EVERSWEET™ Stevia Sweetener, as Consumers Increasingly Demand Reduced-Calorie Food and Beverages. 2019. Available online: https://www.dsm.com/food-specialties/en_US/insights/innovation/2019-11-14-cargill-dsm-joint-venture-avansya-starts-commercial-scale-production-of-eversweet-stevia-sweetener-as-consumers-increasingly-demand-reduced-calorie-food-and-beverages.html (accessed on 14 November 2019).
- PRNewswire. Global Stevia Markets Report 2022–2028—Surging Demand for Natural Sweeteners, Rising Demand in Beverage Industry & Increasing Number of New Stevia-Based Products. Research and Markets. 2022. Available online: https://www.prnewswire.com/news-releases/global-stevia-markets-report-2022-2028---surging-demand-for-natural-sweeteners-rising-demand-in-beverage-industry--increasing-number-of-new-stevia-based-products-301501773.html (accessed on 14 March 2022).
- S&W Company Sacramento. S&W Granted Patent for Stevia Variety SW129 for Commercial Production Market; S&W Seed Company: Sacramento, CA, USA, 2017. [Google Scholar]
- Newswire Codexis. Codexis Introduces Improved Enzymes to Further Enhance Tate & Lyle’s Stevia and Allulose Production; Codexis: Redwood City, CA, USA, 2021. [Google Scholar]
- ADM. ADM Advances Protein Innovation with Opening of New Plant-Based Lab in Singapore; ADM: Chicago, IL, USA, 2021. [Google Scholar]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Cox, D.A. Hartmann and Kester’s plant propagation principles and practices. HortScience 2018, 53, 741. [Google Scholar] [CrossRef] [Green Version]
Technique | Methodology | Target Metabolite | Output | References |
---|---|---|---|---|
Elicitors in field | H2O2, SA, chitosan | Stevioside and Reb A | Salicylic acid (0.1 mM) showed a significantly improved ratio of SvGls and Reb A | Vázquez-Hernández et al., 2018 [35] |
Organic fertilizer | Nitrogen, calcium, magnesium and sulfur | Stevioside and Reb A, Reb C | Increase in the production of Stevioside and Reb A, Reb C | Díaz-Gutiérrez et al., 2020 [33] |
Elicitors foliar application | Chitosan, MeJA, yeast extract | Steviol glycosides | Increased expression of UGTs involved in SvGls synthesis | Rasouli et al., 2018 [32] |
Leaf infiltration | Daminozide (DAM) and NAA, GA3 | Steviol glycosides | Increased transcriptional levels of KO, UGT85C2, and UGT76G1 | Yoneda et al., 2018 [36] |
Microelements application | SA with Fe, Zn | Stevioside and Rebaudioside | Increased concentration of Reb A, B, C, steviosides, Dulcoside A | Omidi et al., 2019 [37] |
Stress and elicitor in field | NaCl stress and chitosan | Stevioside and Rebaudioside | Increased tolerance to stress and SvGls production | Gerami et al., 2020 [30] |
Stress in field | NaCl | Steviol glycosides | 30 mM of NaCl caused an increase in SvGls synthesis | Shahverdi et al., 2019 [29] |
Technique | Methodology | Traits | Output | References |
---|---|---|---|---|
Ploidy induction | Seed + 0.2% colchicine (24 h) induce tetraploidy | Reb A | Reb A (2.84% dry weight) | Talei et al., 2020 [40] |
Ploidy induction | Seed + 0.1% colchicine (24 h) induce tetraploidy | Stevioside Reb A | stevioside (2.5-fold) and Reb A (1.5-fold) | Zhang et al., 2018 [65] |
Ploidy induction | Adventitious bud + 0.20% colchicine (12 h) induce tetraploidy | Stevioside | SvGls increased by 1.27-fold | Xiang et al., 2019 [43] |
Ploidy induction | Axillary buds + 1% colchicine (3 days) induce tetraploidy | Stevioside | SvGls increased by 2.5-fold | Mahdi et al., 2018 [44] |
Micropropagation with elicitors | WPM, MeJA, SA, and CHI | Stevioside | 17.4 times stevioside production than control at 100 µM MeJA | Bayraktar et al., 2018 [47] |
Micropropagation with elicitors | Glutamine | Stevioside | Highest amount of stevioside (22.74) and Reb (12.19) was seen under 2% glutamine | Esmaeili et al., 2018 [48] |
Micropropagation with elicitors | Chitosan, yeast extract, MeJA | Stevioside and Reb A | MeJA 100 and CH 200 mg/L significantly enhanced the Reb A/ST ratio | Rasouli et al., 2021 [49] |
Micropropagation with salinity stress | NaCl | Steviol glycosides | Upregulation of CMS, CMK, HDR, and UGT76G1 involved in SvGl synthesis | Lucho et al., 2019 [50] |
Seed culture | Agar gel, NaCl | Stevioside and Reb A | Upregulation SrIDI, SrCPPS1 involved in SvGls synthesis | Simlat et al., 2020 [61] |
Callus and cell suspension culture | growth regulators | Major and minor SvGls | Ten times higher SvGls production | Bondarev et al., 2019 [60] |
Adventitious root culture | GA3, NAA | Stevioside, Reb A, dulcoside-A | 2.0 mg/L GA3 increased the production of Stevioside and Reb A, dulcoside-A in roots | Ahmad et al., 2020 [53] |
Lateral bud culture with elicitors | SA, yeast extract | Stevioside, Reb | increase in steviol glycosides content overexpression KA13H, UGT74G1, UGT76G1, UGT85C2 | Mehravaran et al., 2021 [56] |
Axillary buds with elicitor | Mannitol | Stevioside, Reb | Highest stevioside produced at 20 g/L and highest rebaudioside produced at 30 g/L; increased expression of UGT76G1, UGT74G1, KS, KO | Ghaheri et al., 2019 [57] |
Shoot culture with nanoparticles | Engineered zinc oxide (ZnO) | Stevioside, Reb A | Increase in steviol glycosides production (88.21 mg g−1 DW) | Javed et al., 2017 [52] |
Callus culture with nanoparticles | Silver nanoparticles, NAA, BA | Stevioside | Enhanced production of stevioside by 67% | Golkar et al., 2019 [55] |
Root culture with nanoparticles | ZnO and CuO | Steviol glycosides | Increased rebaudioside A (4.42 and 4.44) and stevioside (1.28 and 1.96) | Ahmad et al., 2020 [59] |
Nodal explants with nanoparticles | Fe nanoparticle | Stevioside, Reb A | Stevioside: 4.2 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW | Khan et al., 2020 [54] |
Agrobacterium-mediated transformation of axillary shoots | Overexpression of UGT76G1 | Reb A, Reb B, Reb C, Reb D and Reb G | Reb A production was increased twice that of stevioside | Zhang et al., 2020 [22] |
Agrobacterium-mediated transformation | overexpressed the SrDXS1 and SrKAH | Steviol Glycosides | Transgenic lines SvGls were enhanced by up to 42–54% and 67–88% | Zheng et al., 2019 [64] |
Agrobacterium-mediated foliar explants transformation | 35S CMV promoter | Stevioside, Reb A | 1.4- and 1.5-fold production increase in stevioside and Reb A | Sanchéz-Cordova et al., 2019 [66] |
Transformation with A. rhizogenes and hairy roots production | Transformation under light stress and osmotic stress | Reb, stevioside, steviolbioside and Reb F | The concentration of rebaudioside increased on hairy root under oxidative stress | Libik-Konieczny et al., 2021 [21] |
Target Gene | Characterization of Gene | Expression Assay | Reference |
---|---|---|---|
DXS | Characterized in Mentha (peppermint) | E. coli | Lange et al., 1998 [67] |
DXS | Characterized in Stevia rebaudiana | E. coli strain MC4100 dxs::CAT | Totte et al., 2003 [68] |
DXR | Cloned from Arabidopsis and Mentha (peppermint) | E. coli | Lange and Croteau, 1999 [69] |
DXR | Characterized in S. rebaudiana | E. coli strain MC4100 dxr::TET | Totte et al., 2003 [68] |
MCS | Characterization in Arabidopsis thaliana | E. coli ispF mutant strain EB370 | Hsieh et al., 2006 [70] |
CMS | Characterization in A. thaliana | E. coli XL-1 Blue; M15 (pREP4) | Rohdich et al., 2000 [71] |
GCPE | Characterization in A. thaliana | E. coli strain EcAB3-3 | Querol et al., 2002 [72] |
CMK | Characterization in tomato | E. coli XL-1 Blue | Rohdich et al., 2000b [73] |
CPS, KS | Characterized in S. rebaudiana | Recombinant CPS and KS proteins expression by pET30a and pET30b expression vector | Richmann et al., 1999 [74] |
CPS, KS | Characterized in S. rebaudiana | E. coli XL-1 Blue | Richmann et al., 1999 [74] |
KO | Not characterized; Cloned and expressed in yeast | E. coli XL1-Blue MRF Functional assay by epYES2/NT yeast expression vector | Humphrey et al., 2006 [75] |
KAH | KAH not characterized KAH homologs CYP714A2 and CYP716 characterized in A. thaliana | Expression assay in yeast cells | Nomura et al., 2013 [76] |
UGT85C2, UGT74G1, UGT76G1 | Characterized in S. rebaudiana | Expressed in BL21-CodonPlus (DE3) E. coli | Brandle and Telmer, 2007 [77] |
UGT76G1 | Characterized in S. rebaudiana | Agrobacterium-mediated transient expression in Nicotiana | Petit et al., 2020 [78] |
UGT91D2 | Characterized in S. rebaudiana | E. coli BL21 (DE3) pXL17/pXL13 | Wang et al., 2016 [79] |
Target Enzyme | Strain Used | Methodology | Production Rate | Reference |
---|---|---|---|---|
Ent-kaurene | E. coli BL21 (DE3) | IPTG (0.02 mM) and fermentation temperature (30 °C), the maximum yield of ent-kaurene was improved | 2.16 mg L−1 to 194.12 mg L−1 (shake flask) and 1.872 g L−1 (in 5-l bioreactor) | Wang et al., 2016 [79] |
Ent-KA | E. coli BL21 (SSY10) | Enhanced expression of KO-Sr and optimized fermentation temperature (22 °C) and IPTG (0.1 mM) concentration | 100.23 mg/L | Wang et al., 2016 [79] |
Steviol | E. coli BL21 (SSY10) | Replaced stevia derived KAH by engineering N-terminus of A. thaliana CYP714A2 to 17αTR29CYP714A2 | 15.47 mg/L | Wang et al., 2016 [79] |
Reb A | E. coli BL21 (SSY10) | UGT module UGT85C2/UGT91D2w/UGT74G1/UGT76G1 incorporated into 17αTR29CYP714A2 | 10.03 mg/L | Wang et al., 2016 [79] |
Ent-KA | E. coli BL21 | 5′ UTR of GGPPS, CPPS, and KS engineered and expressed | 623.6 ± 3 mg/L (batch) | Moon et al., 2020 [88] |
Ent-KA | E. coli BL21 | Overexpressing engineered 5′-UTR, N-terminus of A. thaliana KO and increasing the cellular ratio of NADPH/NADP+ | 50.7 ± 9.8 mg/L (batch) | Moon et al., 2020 [88] |
Steviol | E. coli BL21 | 5′UTR engineered trCYP714A2 and N-terminus modified (UTRCYP714A2-ATCPR2) fusion protein overexpressed | 38.4 ± 1.7 mg/L (batch) | Moon et al., 2020 [88] |
Ent-KA | S. cerevisiae | Glucose used as a substrate, CYP-CPR combinations optimized and optimal KO-KAH-CPR combinations identified | <90 mg/L | Gold et al., 2018 [89] |
Ent-KA | Synechococcus elongatus PCC 7942 | Engineered cyanobacteria to produce ent-kaurenoic acid from CO2. | 2.9 ± 0.01 mg/L | Ko and Woo 2020 [90] |
Reb A | S. cerevisiae | Whole-cell biocatalyst used for expression of UGT76G1, and whole-cell parameters setup for cell permeability, temperature, pH, citrate, and Mg2+ concentrations, and glucose supply. | 1160.5 mg/L (substrate is added 2 g/L stevioside) | Li et al., 2016 [93] |
Reb D | E. coli BL21 | Coupling UGTSL2 from Solanum lycopersicum and StSUS1 from Solanum tuberosum to construct a SuSy-GT for overexpression of RebD | 17.4 g/L (substrate is added 20 g/L Reb A) | Chen et al., 2018 [91] |
Reb D | E. coli BL21 | Established multi-enzyme reaction system with UGT76G1, UGTSL2, and StSUS1, and replaced wild-type UGTSL2 with Asn358phe mutant | 14.4 g/L (substrate is added 20 g/L stevioside) | Chen et al., 2020 [92] |
Reb D | Pichia pastoris | One-pot synthesis utilized for heterologous expression of EUGT11 from Oryza sativa forming XE-3 transformant | Conversion rate reached 95.3% | Wang et al., 2020 [94] |
Syevioside Reb A | Pichia pastoris | TtbGal1 and MtBgl3a expressed in Pichia pastoris | Conversion of 34.6% (stevioside) and 25.6–35.6% (RebA) | Zerva et al., 2021 [95] |
Reb A Reb M | E. coli BL21 | Co-expression of endogenous prpD and malK in E. coli improved the expression of Smt3-UGT76G1. | 4.8 g/L (RebA) 1.8 g/L (RebM) | Shu et al., 2020 [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, A.; Han, S.-S. Critical Review on Key Approaches to Enhance Synthesis and Production of Steviol Glycosides: A Blueprint for Zero-Calorie Sweetener. Appl. Sci. 2022, 12, 8640. https://doi.org/10.3390/app12178640
Rai A, Han S-S. Critical Review on Key Approaches to Enhance Synthesis and Production of Steviol Glycosides: A Blueprint for Zero-Calorie Sweetener. Applied Sciences. 2022; 12(17):8640. https://doi.org/10.3390/app12178640
Chicago/Turabian StyleRai, Anjali, and Sung-Soo Han. 2022. "Critical Review on Key Approaches to Enhance Synthesis and Production of Steviol Glycosides: A Blueprint for Zero-Calorie Sweetener" Applied Sciences 12, no. 17: 8640. https://doi.org/10.3390/app12178640
APA StyleRai, A., & Han, S. -S. (2022). Critical Review on Key Approaches to Enhance Synthesis and Production of Steviol Glycosides: A Blueprint for Zero-Calorie Sweetener. Applied Sciences, 12(17), 8640. https://doi.org/10.3390/app12178640