sEMG-Upper Limb Interaction Force Estimation Framework Based on Residual Network and Bidirectional Long Short-Term Memory Network
Abstract
:1. Introduction
- Our framework can automatically extract the features of the sEMG signal and capture the local dependence between the data.
- By introducing the attention mechanism, we can capture the salient structures of input data and explore the correlations among multiple dimensions of data, improving the learning performance of the model.
- Our framework overall outperforms the non-ensemble methods in accuracy. In addition, the training time and testing time of the network are the shortest among other reported methods.
2. Materials and Methods
2.1. Elbow Anatomy Model Analysis
2.2. Signal Preprocessing
2.3. Our Proposed Framework
2.3.1. Feature Extraction
- (1)
- Convolutional Layer
- (2)
- Pooling Layer
- (3)
- Residual Learning
2.3.2. Force Estimation
2.4. Training Process
2.4.1. Optimizer
2.4.2. Cost Function
2.4.3. Learning Rate
2.4.4. Overfitting
2.5. Evaluation
- 1.
- Calculate the total sum of squares (TSS):
- 2.
- Calculate the sum of squares for error (SSE):
- 3.
- The coefficient of determination () is used to evaluate the fit of the network:
3. Results
3.1. Subjects and Experimental Setup
3.2. Verification
3.2.1. Signal Decoupling
3.2.2. Force Estimation
4. Discussion
5. Conclusions
6. Future Works
- (1)
- To improve the accuracy and robustness of muscle force estimation, it is necessary to develop a multi–signal fusion method.
- (2)
- We will apply the estimation results of elbow interaction force to the identification of human upper limb motion intention to provide accurate information for rehabilitation assistance equipment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, H.; Yang, X.; Zheng, N. Tri-Co robot: A Chinese robotic research initiative for enhanced robot interaction capabilities. Natl. Sci. Rev. 2017, 485, nwx148. [Google Scholar] [CrossRef]
- Sirintuna, D.; Ozdamar, I.; Aydin, Y. Detecting Human Motion Intention during pHRI Using Artificial Neural Networks Trained by EMG Signals. In Proceedings of the 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Naples, Italy, 31 August–4 September 2020. [Google Scholar]
- Pan, C.T.; Chang, C.C.; Yang, Y.S. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sens. Actuators A Phys. 2019, 301, 111708. [Google Scholar] [CrossRef]
- Hu, X.; Tong, K.; Li, L. The mechanomyography of persons after stroke during isometric voluntary contractions. J. Electromyogr. Kinesiol. 2007, 17, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; El Fiqi, H.; Hu, J.; Abbasss, H.A. Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3359–3372. [Google Scholar] [CrossRef]
- Mithbavkar, S.; Shah, M. Recognition of Emotion in Indian Classical Dance Using EMG Signal. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 1336. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, Y.; Li, Z.; Song, R. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model. Front. Neurorobot. 2018, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Jiang, N.; Rehbaum, H. The extraction of neural information from the surface EMG for the control of upperlimb prostheses: Emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Guo, S.; Huang, Q.; Ishihara, H.; Hirata, H. Electromyography-based quantitative representation method for upperlimb elbow joint angle in sagittal plane. J. Med. Biol. Eng. 2015, 35, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.; Alonso, F.J. A comparison among different Hill-type contraction dynamics formulations for muscle force estimation. Mech. Sci. 2016, 7, 19–29. [Google Scholar] [CrossRef]
- Buchanan, T.S.; Lloyd, D.G.; Manal, K.; Besier, T.F. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med. Sci. Sports Exerc. 2005, 37, 1911–1916. [Google Scholar] [CrossRef] [Green Version]
- Hayashibe, M.; Guiraud, D.; Poignet, P. EMG-to-force estimation with full-scale physiology based muscle model. Intell. Robot. Syst. 2009, 6, 1621–1626. [Google Scholar]
- Na, Y.; Choi, C.; Lee, H.-D.; Kim, J. A Study on Estimation of Joint Force Through Isometric Index Finger Abduction with the Help of SEMG Peaks for Biomedical Applications. IEEE Trans. Cybern. 2016, 46, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.; Kim, S.J.; Kim, J. Force estimation in fatigue condition using a muscle-twitch model during isometric finger contraction. Med. Eng. Phys. 2017, 50, 103–108. [Google Scholar] [CrossRef]
- Youn, W.; Kim, J. Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography. Med. Biol. Eng. Comput. 2010, 48, 1159. [Google Scholar] [CrossRef]
- Wang, D.Q.; Wu, H.F.; Xie, C.L.; Gao, L.F. Suppression of Motion Artifacts in Multichannel Mechanomyography Using Multivariate Empirical Mode Decomposition. IEEE Sens. J. 2019, 19, 5732–5739. [Google Scholar] [CrossRef]
- Allouch, S.; Harrach, M.A.; Boudaoud, S.; Laforet, J.; Younes, R. Muscle force estimation using data fusion from high-density SEMG grid. In Proceedings of the 2nd IEEE International Conference on Advances in Biomedical Engineering (ICABME), Tripoli, Lebanon, 11–13 September 2013. [Google Scholar]
- Xia, P.; Hu, J.; Peng, Y. EMG-Based Estimation of Limb Movement Using Deep Learning with Recurrent Convolutional Neural Networks. Artif. Organs 2018, 42, E67. [Google Scholar] [CrossRef]
- Duan, F.; Dai, L.; Chang, W.; Chen, Z.; Zhu, C.; Li, W. sEMG-Based Identification of Hand Motion Commands using Wavelet Neural Network Combined with Discrete Wavelet Transform. IEEE Trans. Ind. Electron. 2016, 63, 1923–1934. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Q.; Wang, D. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals. J. Electromyogr. Kinesiol. 2018, 42, 136–142. [Google Scholar] [CrossRef]
- Xie, C.; Wang, D.; Wu, H. A long short-term memory neural network model for knee joint acceleration estimation using mechanomyography signals. Int. J. Adv. Robot. Syst. 2020, 17, 172988142096870. [Google Scholar] [CrossRef]
- Luo, J.; Liu, C.; Yang, C. Estimation of EMG-Based Force Using a Neural-Network-Based Approach. IEEE Access 2019, 7, 64856–64865. [Google Scholar] [CrossRef]
- Aviles, A.I.; Alsaleh, S.M.; Montseny, E. A Deep-Neuro-Fuzzy approach for estimating the interaction forces in Robotic surgery. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, QC, Canada, 24–29 July 2016. [Google Scholar]
- Lu, W.; Gao, L.; Zhang, Q. A Hybrid Deep Learning Framework for Estimation of Elbow Flexion Force via Electromyography. J. Phys. Conf. Ser. 2021, 1883, 012164. [Google Scholar] [CrossRef]
- Zonnino, A.; Sergi, F. Model-based estimation of individual muscle force based on measurements of muscle activity in forearm muscles during isometric tasks. IEEE Trans. Bio Med. Eng. 2019, 67, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Plewa, K.; Samadani, A.; Orlandi, S. A novel approach to automatically quantify the level of coincident activity between EMG and MMG signals. J. Electromyogr. Kinesiol. 2018, 41, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Ibitoye, M.O.; Hamzaid, N.A.; Abdulwahab, A.K. Prospects of Mechanomyography (MMG) in Muscle Function Assessment during FES Evoked Contraction: A Review. In Proceedings of the 15th International Conference on Biomedical Engineering, Singapore, 4–7 December 2013; Springer: Cham, Switzerland, 2014; Volume 43, pp. 524–526. [Google Scholar]
- Lin, H.; Zhao, J.; Liang, S. Prediction model for stock price trend based on convolution neural network. J. Intell. Fuzzy Syst. 2020, 39, 4999–5008. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 6, pp. 770–778. [Google Scholar]
- Huan, J.; Li, H.; Li, M. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Chang Zhou fishery demonstration base, China. Comput. Electron. Agric. 2020, 175, 105530. [Google Scholar] [CrossRef]
- Hermann, K.M.; Kocisky, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P. Teaching machines to read and comprehend. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; pp. 1684–1692. [Google Scholar]
- Yan, X.; Mou, L.L.; Li, G.; Chen, Y.C.; Peng, H.; Jin, Z. Classifying relations via long short term memory networks along shortest dependency path. arXiv, 2015; arXiv:1508.03720. [Google Scholar]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019. [Google Scholar]
- Zarba, S.; Gonczarek, A.; Tomczak, J.M.; Witek, J. Accelerated learning for Restricted Boltzmann Machine with momentum term. In Progress in Systems Engineering; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar]
- Vidal-Beltrán, S.; Bonilla, J.L.L.; Piñón, F.M.; Yalja-Montiel, J. Gradient Descent Optimization Algorithms for Decoding SCMA Signals. Int. J. Comput. Intell. Appl. 2020, 3, 2150002. [Google Scholar] [CrossRef]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Cameron, A.C.; Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econ. 1997, 77, 329–342. [Google Scholar] [CrossRef]
- Lu, L.; Wu, Q.; Xi, C. Development of a sEMG-based torque estimation control strategy for a soft elbow exoskeleton. Robot. Auton. Syst. 2019, 111, 88–98. [Google Scholar] [CrossRef]
- Nurhanim, K.; Elamvazuthi, I.; Izhar, L.I. Development of a model for sEMG based joint-torque estimation using Swarm techniques. In Proceedings of the IEEE International Symposium on Robotics&Manufacturing Automation, Ipoh, Malaysia, 25–27 September 2016. [Google Scholar]
Subject | Gender | Age | Mass (kg) | Height (cm) |
---|---|---|---|---|
A1 | Male | 27 | 77 | 176 |
A2 | Male | 26 | 70 | 180 |
A3 | Male | 22 | 80 | 170 |
A4 | Female | 22 | 52 | 165 |
A5 | Female | 23 | 48 | 161 |
Parameters | Force Sensor | sEMG Sensor |
---|---|---|
Model | CAS-6F/MS-SM | EDK0056 |
Power supply voltage | DC(9V) | DC(5V) |
Temperature range | −30 °C~70 °C | −20 °C~60 °C |
Output Signal | Analog Signal | Analog Signal |
Maximum of output Communication | 1000 N RS-485 | 4.5 V Bluetooth 4.0 |
Time | 1 s | 2 s | 3 s | |
---|---|---|---|---|
Angle | ||||
30° | 100% (MVC) | 100% (MVC) | 100% (MVC) | |
60° | 100% (MVC) | 100% (MVC) | 100% (MVC) | |
90° | 100% (MVC) | 100% (MVC) | 100% (MVC) | |
120° | 100% (MVC) | 100% (MVC) | 100% (MVC) |
Hyper–Parameters | ResNet | BiLSTM |
---|---|---|
Layers | 101 | 128–128 |
Activation Function | ReLU | ReLU |
Optimizer | Momentum | Momentum |
Dropout | 0.5 | 0.5 |
Initial Lr | 0.0001 | 0.0001 |
Batch Size | 128 | 128 |
Epoch | 1000 | 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Gao, L.; Cao, H.; Li, Z. sEMG-Upper Limb Interaction Force Estimation Framework Based on Residual Network and Bidirectional Long Short-Term Memory Network. Appl. Sci. 2022, 12, 8652. https://doi.org/10.3390/app12178652
Lu W, Gao L, Cao H, Li Z. sEMG-Upper Limb Interaction Force Estimation Framework Based on Residual Network and Bidirectional Long Short-Term Memory Network. Applied Sciences. 2022; 12(17):8652. https://doi.org/10.3390/app12178652
Chicago/Turabian StyleLu, Wei, Lifu Gao, Huibin Cao, and Zebin Li. 2022. "sEMG-Upper Limb Interaction Force Estimation Framework Based on Residual Network and Bidirectional Long Short-Term Memory Network" Applied Sciences 12, no. 17: 8652. https://doi.org/10.3390/app12178652
APA StyleLu, W., Gao, L., Cao, H., & Li, Z. (2022). sEMG-Upper Limb Interaction Force Estimation Framework Based on Residual Network and Bidirectional Long Short-Term Memory Network. Applied Sciences, 12(17), 8652. https://doi.org/10.3390/app12178652