Experimental Study on the Heat Transfer Performance of Various Magnet Arrangements in a Closed Space Filled with Ferrofluid
Abstract
:1. Introduction
2. Experimental Process
2.1. Experimental Device
2.2. Experimental Procedure
2.3. Design of Experiments
3. Numerical Analysis
3.1. Governing Equations
- -
- Continuity:
- -
- Momentum:
- -
- Energy:
- -
- Momentum:Additionally, the expression for Gauss’s laws is as follows [16]:where B is the magnetic flux density, M is the magnetization, and H is the magnetic field strength. Furthermore, is a constant value, meaning a permeability value in a vacuum state (=); B and H as expressions for Maxwell’s equation, respectively, are as follows [17]:
3.2. Grid Systems and Operating Conditions
4. Optimization Process
4.1. Response Surface Methods
4.2. Response Surface Result of Neural Networks
4.3. Response Surface Result of Non-Parametric Regression
4.4. Accuracy of Response Surface
4.5. Optimization Formula
5. Results and Discussion
5.1. Optimization Results
5.2. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, G.; Han, Y.; Lau, B.L.; Zhang, X.; Rhee, D.M. An efficient single phase liquid cooling system for microelectronic devices with high power chip. In Proceedings of the 17th Electronics Packaging and Technology Conference (EPTC), Singapore, 2–4 December 2015; pp. 1–6. [Google Scholar]
- Marcinichen, J.B.; Olivier, J.A.; Thome, J.R. On-chip two-phase cooling of datacenters: Cooling system and energy recovery evaluation. Appl. Therm. Eng. 2012, 41, 36–51. [Google Scholar] [CrossRef]
- Pislaru-Danescu, L.; Morega, A.; Telipan, G.; Stoica, V. Nanoparticles of ferrofluid Fe3O4 synthetised by coprecipitation method used in microactuation process. Optoelectron Adv. Mater. 2010, 8, 1182–1186. [Google Scholar]
- Sheikhnejad, Y.; Hosseini, R.; Avval, M.S. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars. J. Magn. Magn. Mater. 2017, 424, 16–25. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, Y.J. Effect of Magnetic Nanofluids on the Performance of a Fin-Tube Heat Exchanger. Appl. Sci. 2021, 11, 9261. [Google Scholar] [CrossRef]
- Singh, D.; Shyam, S.; Mehta, B.; Asfer, M.; Alshqirate, A.S. Exploring heat transfer characteristics of ferrofluid in the presence of magnetic field for cooling of solar photovoltaic systems. J. Therm. Sci. Eng. Appl. 2019, 11, 041017. [Google Scholar] [CrossRef]
- Heidari, N.; Rahimi, M.; Azimi, N. Experimental investigation on using ferrofluid and rotating magnetic field (RMF) for cooling enhancement in a photovoltaic cell. Int. Commun. Heat Mass Transf. 2018, 94, 32–38. [Google Scholar] [CrossRef]
- Bezaatpour, M.; Rostamzadeh, H. Design and evaluation of flat plate solar collector equipped with nanofluid, rotary tube, and magnetic field inducer in a cold region. Renew. Energy 2021, 170, 574–586. [Google Scholar] [CrossRef]
- Mehrez, Z.; El Cafsi, A. Heat exchange enhancement of ferrofluid flow into rectangular channel in the presence of a magnetic field. Appl. Math. Comput. 2021, 391, 125634. [Google Scholar] [CrossRef]
- Ashjaee, M.; Goharkhah, M.; Khadem, L.A.; Ahmadi, R. Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink. Heat Mass Transf. 2015, 51, 953–964. [Google Scholar] [CrossRef]
- Ghorbani, B.; Ebrahimi, S.; Vijayaraghavan, K. CFD modeling and sensitivity analysis of heat transfer enhancement of a ferrofluid flow in the presence of a magnetic field. Int. J. Heat Mass Transf. 2018, 127, 544–552. [Google Scholar] [CrossRef]
- Pathak, S.; Zhang, R.; Bun, K.; Zhang, H.; Gayen, B.; Wang, X. Development of a novel wind to electrical energy converter of passive ferrofluid levitation through its parameter modelling and optimization. Sustain. Energy Technol. Assess. 2021, 48, 101641. [Google Scholar] [CrossRef]
- Lee, M.; Kim, Y.J. Thermomagnetic convection of ferrofluid in an enclosure channel with an internal magnetic field. Micromachines 2019, 10, 553. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Xiao, Z.; Zeng, Q.; Xiao, L.; Long, X. Implementation of design of experiment for structural optimization of annular jet pump. J. Mech. Sci. Technol. 2016, 30, 585–592. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Gerdroodbary, M.B.; Mousavi, S.V.; Ganji, D.D.; Moradi, R. Heat transfer enhancement of ferrofluid inside an 90 elbow channel by non-uniform magnetic field. J. Magn. Magn. Mater. 2018, 460, 302–311. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, D. Experimental investigation on convection heat transfer characteristics of ferrofluid in a horizontal channel under a non-uniform magnetic field. Appl. Therm. Eng. 2019, 163, 114306. [Google Scholar] [CrossRef]
- Szabo, P.S.; Früh, W.G. The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field. J. Magn. Magn. Mater. 2018, 447, 116–123. [Google Scholar] [CrossRef]
- Bezaatpour, M.; Goharkhah, M. Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow. Appl. Therm. Eng. 2020, 167, 114801. [Google Scholar] [CrossRef]
- Liu, Y.; Shimoda, M.; Shibutani, Y. Parameter-free method for the shape optimization of stiffeners on thin-walled structures to minimize stress concentration. J. Mech. Sci. Technol. 2015, 29, 1383–1390. [Google Scholar] [CrossRef]
- Green, P.J.; Silverman, B.W. Generalized Linear Models and Nonparametric Regression; Chapman and Hall: New York, NY, USA, 1994. [Google Scholar]
- Kang, H.S.; Kim, Y.J. Optimal design of impeller for centrifugal compressor under the influence of one-way fluid-structure interaction. J. Mech. Sci. Technol. 2016, 30, 3953–3959. [Google Scholar] [CrossRef]
- Malekan, M.; Khosravi, A. Investigation of convective heat transfer of ferrofluid using CFD simulation and adaptive neuro-fuzzy inference system optimized with particle swarm optimization algorithm. Powder Technol. 2018, 333, 364–376. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Thermal conductivity | |
Thermal expansion coefficient | |
Relative permeability | |
Heat capacity at static pressure | |
Density (T = 298.15 K) | |
Dynamic viscosity |
Properties | Value |
---|---|
Temperature of Air | |
Initial temperature of the Ferrofluid | |
High temperature surface of the Pyrex glass tube | |
Magnetic flux density of the permanent magnet (M) | 0.325 T |
Velocity of reciprocating linear motor | 17.5 cm/s |
Experiment | Distance of D1 | Distance of D2 |
---|---|---|
Experiment 1 | 13.3 ± 0.025 cm | 8.0 ± 0.025 cm |
Experiment 2 | 21.3 ± 0.025 cm | 13.3 ± 0.025 cm |
Experiment 3 | 5.3 ± 0.025 cm | 5.3 ± 0.025 cm |
Experiment 4 | 18.7 ± 0.025 cm | 16.0 ± 0.025 cm |
Experiment 5 | 8.0 ± 0.025 cm | 24.0 ± 0.025 cm |
Experiment 6 | 26.7 ± 0.025 cm | 10.7 ± 0.025 cm |
Experiment 7 | 16.0 ± 0.025 cm | 26.7 ± 0.025 cm |
Experiment 8 | 24.0 ± 0.025 cm | 21.3 ± 0.025 cm |
Experiment 9 | 10.7 ± 0.025 cm | 18.7 ± 0.025 cm |
Experiment | TC 1 (°C) | TC 2 (°C) | TC 3 (°C) | TC 4 (°C) |
---|---|---|---|---|
Experiment 1 | 34.5627 | 34.5769 | 34.5188 | 34.4329 |
Experiment 2 | 34.7507 | 34.7574 | 34.7345 | 34.6549 |
Experiment 3 | 34.0390 | 34.0583 | 33.9920 | 34.0150 |
Experiment 4 | 35.0921 | 34.9866 | 34.8003 | 34.9575 |
Experiment 5 | 35.0339 | 34.8213 | 34.8070 | 34.7308 |
Experiment 6 | 34.7378 | 34.7169 | 34.7249 | 34.3848 |
Experiment 7 | 34.9472 | 34.7990 | 34.7724 | 34.5860 |
Experiment 8 | 35.2011 | 34.1153 | 35.1518 | 34.9218 |
Experiment 9 | 34.8204 | 34.9160 | 34.8537 | 34.8118 |
TC 1 | TC 2 | TC 3 | TC 4 | ||
---|---|---|---|---|---|
NN | R2 | 0.976 | 0.943 | 0.966 | 0.973 |
RMSE | 0.246 | 0.126 | 0.091 | 0.0968 | |
NPR | R2 | 0.998 | 0.998 | 0.998 | 0.998 |
RMSE | 0.012 | 0.011 | 0.011 | 0.009 |
D1 (cm) | D2 (cm) | TC 1 (°C) | TC 2 (°C) | TC 3 (°C) | TC 4 (°C) | ||
---|---|---|---|---|---|---|---|
NN | Predict | 18 | 21.06 | 35.16 | 35.19 | 35.19 | 35.08 |
Experiment | 34.63 | 34.68 | 34.69 | 34.57 | |||
TC’s Relative error (Predict vs. Exp.) | 1.5% | 1.45% | 1.42% | 1.45% | |||
NPR | Predict | 17.78 | 18.80 | 35.51 | 35.35 | 35.25 | 35.09 |
Experiment | 35.09 | 35.19 | 35.09 | 34.99 | |||
TC’s Relative error (Predict vs. Exp.) | 1.18% | 0.45% | 0.45% | 0.28% |
TC 1 (°C) | TC 2 (°C) | TC 3 (°C) | TC 4 (°C) | ||
---|---|---|---|---|---|
Experiment 3 | Numerical analysis | 33.88 | 33.86 | 33.84 | 33.83 |
Experiment | 34.03 | 34.05 | 33.99 | 34.01 | |
TC’s Relative error (Numerical. vs. Exp.) | 0.44% | 0.56% | 0.44% | 0.53% | |
NPR | Numerical analysis | 34.84 | 34.81 | 34.80 | 34.78 |
Experiment | 35.09 | 35.19 | 35.09 | 34.99 | |
TC’s Relative error (Numerical. vs. Exp.) | 0.71% | 1.08% | 0.83% | 0.60% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.-S.; Choi, Y.-S.; Seo, H.-S.; Kim, Y.-J. Experimental Study on the Heat Transfer Performance of Various Magnet Arrangements in a Closed Space Filled with Ferrofluid. Appl. Sci. 2022, 12, 8666. https://doi.org/10.3390/app12178666
Kang H-S, Choi Y-S, Seo H-S, Kim Y-J. Experimental Study on the Heat Transfer Performance of Various Magnet Arrangements in a Closed Space Filled with Ferrofluid. Applied Sciences. 2022; 12(17):8666. https://doi.org/10.3390/app12178666
Chicago/Turabian StyleKang, Hyun-Su, Yun-Seok Choi, Hyeon-Seok Seo, and Youn-Jea Kim. 2022. "Experimental Study on the Heat Transfer Performance of Various Magnet Arrangements in a Closed Space Filled with Ferrofluid" Applied Sciences 12, no. 17: 8666. https://doi.org/10.3390/app12178666
APA StyleKang, H. -S., Choi, Y. -S., Seo, H. -S., & Kim, Y. -J. (2022). Experimental Study on the Heat Transfer Performance of Various Magnet Arrangements in a Closed Space Filled with Ferrofluid. Applied Sciences, 12(17), 8666. https://doi.org/10.3390/app12178666