A Systematic Control Design Method with Active Damping Control in Voltage Source Converters
Abstract
:1. Introduction
- Proposing a direct design approach with the minimum recursive process to calculate the control parameters,
- Providing a clear insight between tuning parameters and stability and performance indicators,
- Increasing system robustness against uncertainties in the grid impedance and operating point conditions,
- Improving system transient response and fault ride-through (FRT) capability by implementing a PLL with higher bandwidths.
2. System Description and Modeling
2.1. Derivation of Proposed Control Method
2.2. Proposed Nonlinear and Linearized State-Space Model of a Grid-Connected VSC for Optimal Control System Design
3. Design of the Control Gain Matrix
3.1. Weighting Matrixes’ Selection
- Definitions, stability, and performance indicators:
- Selection of q1:
- Selection of q2:
- Selection of q3:
- Selection of r:
- A summary of the weighting factors design procedure:
- Step 1: Small values for q1, q2, q3, and r are selected.
- Step 2: Increasing q1 adjusts the maximum damping factor.
- Step 3: Increasing q2 adjusts the minimum damping ratio.
- Step 4: Increasing r reduces control gain matrix norm.
- Step 5: Increasing q3 changes dc-link voltage and inverter current transient response.
3.2. Robustness Analysis
3.3. Control Gain Matrix Simplification
4. Simulation and Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farrokhabadi, M.; Lagos, D.; Wies, R.W.; Paolone, M.; Liserre, M.; Meegahapola, L.; Kabalan, M.; Hajimiragha, A.H.; Peralta, D.; Elizondo, M.A.; et al. Microgrid Stability Definitions, Analysis, and Examples. IEEE Trans. Power Syst. 2020, 35, 13–29. [Google Scholar] [CrossRef]
- Ma, R.; Qiu, Q.; Kurths, J.; Zhan, M. Fast-Slow-Scale Interaction Induced Parallel Resonance and Its Suppression in Voltage Source Converters. IEEE Access 2021, 9, 90126–90141. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, X. Stationary-Frame Complex-Valued Frequency-Domain Modeling of Three-Phase Power Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1922–1933. [Google Scholar] [CrossRef]
- Gholami-Khesht, H.; Davari, P.; Blaabjerg, F. Adaptive Predictive-DPC for LCL-Filtered Grid Connected VSC with Reduced Number of Sensors. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, X.; Rygg, A.; Molinas, M. Sequence Domain SISO Equivalent Models of a Grid-Tied Voltage Source Converter System for Small-Signal Stability Analysis. IEEE Trans. Energy Convers. 2018, 33, 741–749. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Yang, D. DQ-Frame Impedance Measurement of Three-Phase Converters Using Time-Domain MIMO Parametric Identification. IEEE Trans. Power Electron. 2021, 36, 2131–2142. [Google Scholar] [CrossRef]
- Hans, F.; Schumacher, W.; Chou, S.-F.; Wang, X. Design of Multifrequency Proportional–Resonant Current Controllers for Voltage-Source Converters. IEEE Trans. Power Electron. 2020, 35, 13573–13589. [Google Scholar] [CrossRef]
- Lu, M.; Al-Durra, A.; Muyeen, S.M.; Leng, S.; Loh, P.C.; Blaabjerg, F. Benchmarking of Stability and Robustness against Grid Impedance Variation for LCL-Filtered Grid-Interfacing Inverters. IEEE Trans. Power Electron. 2018, 33, 9033–9046. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F.; Loh, P.C. Grid-Current-Feedback Active Damping for LCL Resonance in Grid-Connected Voltage-Source Converters. IEEE Trans. Power Electron. 2016, 31, 213–223. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X. Virtual-Flux-Based Passivation of Current Control for Grid-Connected VSCs. IEEE Trans. Power Electron. 2020, 35, 12673–12677. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Harnefors, L.; Hasler, J.-P.; Danielsson, C. Admittance-Dissipativity Analysis and Shaping of Dual-Sequence Current Control for VSCs. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 324–335. [Google Scholar] [CrossRef]
- Mahafugur Rahman, F.M.; Pirsto, V.; Kukkola, J.; Routimo, M.; Hinkkanen, M. State-Space Control for LCL Filters: Converter versus Grid Current Measurement. IEEE Trans. Ind. Appl. 2020, 56, 6608–6618. [Google Scholar] [CrossRef]
- Khajehoddin, S.A.; Karimi-Ghartemani, M.; Ebrahimi, M. Optimal and Systematic Design of Current Controller for Grid-Connected Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 812–824. [Google Scholar] [CrossRef]
- Ahmadi, A.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A.; Marzband, M. Optimal Robust LQI Controller Design for Z-Source Inverters. Appl. Sci. 2020, 10, 7260. [Google Scholar] [CrossRef]
- Maccari, L.A.; Massing, J.R.; Schuch, L.; Rech, C.; Pinheiro, H.; Oliveira, R.C.L.F.; Montagner, V.F. LMI-Based Control for Grid-Connected Converters with LCL Filters under Uncertain Parameters. IEEE Trans. Power Electron. 2014, 29, 3776–3785. [Google Scholar] [CrossRef]
- Koch, G.G.; Osorio, C.R.D.; Pinheiro, H.; Oliveira, R.C.L.F.; Montagner, V.F. Design Procedure Combining Linear Matrix Inequalities and Genetic Algorithm for Robust Control of Grid-Connected Converters. IEEE Trans. Ind. Appl. 2020, 56, 1896–1906. [Google Scholar] [CrossRef]
- Koch, G.G.; Maccari, L.A.; Oliveira, R.C.L.F.; Montagner, V.F. Robust H∞ State Feedback Controllers Based on Linear Matrix Inequalities Applied to Grid-Connected Converters. IEEE Trans. Ind. Electron. 2019, 66, 6021–6031. [Google Scholar] [CrossRef]
- Bimarta, R.; Kim, K.-H. A Robust Frequency-Adaptive Current Control of a Grid-Connected Inverter Based on LMI-LQR under Polytopic Uncertainties. IEEE Access 2020, 8, 28756–28773. [Google Scholar] [CrossRef]
- Gholami-Khesht, H.; Davari, P.; Novak, M.; Blaabjerg, F. Robust H∞ Current Control of Three-Phase Grid-Connected Voltage Source Converters Using Linear Matrix Inequalities. In Proceedings of the 2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics (COMPEL), Cartagena, Colombia, 2–5 November 2021; pp. 1–6. [Google Scholar]
- Cecati, F.; Zhu, R.; Liserre, M.; Wang, X. State-Feedback-Based Low-Frequency Active Damping for VSC Operating in Weak-Grid Conditions. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 4762–4767. [Google Scholar] [CrossRef]
- Zhou, S.; Zou, X.; Zhu, D.; Tong, L.; Zhao, Y.; Kang, Y.; Yuan, X. An Improved Design of Current Controller for LCL-Type Grid-Connected Converter to Reduce Negative Effect of PLL in Weak Grid. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 648–663. [Google Scholar] [CrossRef]
- Silwal, S.; Taghizadeh, S.; Karimi-Ghartemani, M.; Hossain, M.J.; Davari, M. An Enhanced Control System for Single-Phase Inverters Interfaced with Weak and Distorted Grids. IEEE Trans. Power Electron. 2019, 34, 12538–12551. [Google Scholar] [CrossRef]
- Zhang, H.; Harnefors, L.; Wang, X.; Hasler, J.-P.; Ostlund, S.; Danielsson, C.; Gong, H. Loop-at-a-Time Stability Analysis for Grid-Connected Voltage-Source Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 5807–5821. [Google Scholar] [CrossRef]
- Huang, L.; Xin, H.; Dorfler, F. H∞-Control of Grid-Connected Converters: Design, Objectives and Decentralized Stability Certificates. IEEE Trans. Smart Grid 2020, 11, 3805–3816. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X. Unified Modular State-Space Modeling of Grid-Connected Voltage-Source Converters. IEEE Trans. Power Electron. 2020, 35, 9700–9715. [Google Scholar] [CrossRef]
- De Bosio, F.; De Souza Ribeiro, L.A.; Freijedo, F.D.; Pastorelli, M.; Guerrero, J.M. Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI with LC Output Filter. IEEE Trans. Ind. Electron. 2016, 63, 4909–4918. [Google Scholar] [CrossRef]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef]
- Hoffmann, N.; Fuchs, F.W. Minimal Invasive Equivalent Grid Impedance Estimation in Inductive–Resistive Power Networks Using Extended Kalman Filter. IEEE Trans. Power Electron. 2014, 29, 631–641. [Google Scholar] [CrossRef]
- De Almeida, P.M.; Ribeiro, A.S.B.; Souza, I.D.N.; Fernandes, M.d.C.; Fogli, G.A.; Cuk, V.; Barbosa, P.G.; Ribeiro, P.F. Systematic Design of a DLQR Applied to Grid-Forming Converters. IEEE J. Emerg. Sel. Top. Ind. Electron. 2020, 1, 200–210. [Google Scholar] [CrossRef]
- Yassami, H.; Darabi, A.; Rafiei, S.M.R. Power System Stabilizer Design Using Strength Pareto Multi-Objective Optimization Approach. Electr. Power Syst. Res. 2010, 80, 838–846. [Google Scholar] [CrossRef]
- Khodabakhshian, A.; Hemmati, R. Multi-Machine Power System Stabilizer Design by Using Cultural Algorithms. Int. J. Electr. Power Energy Syst. 2013, 44, 571–580. [Google Scholar] [CrossRef]
- IEEE Std 1052-2018; IEEE Guide for Specification of Transmission Static Synchronous Compensator (STATCOM) Systems. IEEE: Piscataway, NJ, USA, 2019; pp. 1–115.
References | Design Technique | Inner Control Loops Design | Outer Control Loops Design | PLL Impact | Weak Grid Conditions | Extra Current Sensors | Expertise to Design | Optimizing Control Efforts | Applicability to MIMO Systems |
---|---|---|---|---|---|---|---|---|---|
[7] | Nyquist | yes | no | no | no | no | medium | no | hard |
[8] | Nyquist | yes | no | no | yes | no | medium | no | hard |
[12] | Full state feedback | yes | no | no | yes | yes | low | no | medium |
[13] | Optimal control | yes | no | no | no | yes | medium | yes | easy |
[22] | Optimal control | yes | no | yes | yes | yes | medium | yes | easy |
[15,16,17] | Robust H-infinity | yes | no | no | no | yes | high | yes | medium |
[19] | Robust H-infinity | yes | no | no | yes | yes | high | yes | medium |
[23] | loop-at-a-time | no | yes | no | yes | no | high | no | medium |
[24] | Robust H-infinity | no | yes | yes | yes | yes | high | yes | medium |
Proposed | Optimal control | yes | yes | yes | yes | no | medium | yes | easy |
q1 | norm (Kf) | σmax | ξmin | q2 | norm (Kf) | σmax | ξmin |
---|---|---|---|---|---|---|---|
1 × 101 | 9.7 × 103 | –1.5 | 0.28 | 1 × 10−2 | 1.6 × 103 | –42 | 0.03 |
1 × 102 | 9.8 × 103 | –4.5 | 0.28 | 1 × 10−1 | 3.5 × 103 | –41.9 | 0.1 |
1 × 103 | 9.8 × 103 | –14.1 | 0.28 | 5 × 10−1 | 7.1 × 103 | –41.8 | 0.21 |
1 × 104 | 9.9 × 103 | –41.6 | 0.28 | 1 | 9.8 × 103 | –41.6 | 0.28 |
2 × 104 | 9.9 × 103 | –41.2 | 0.28 | 2 | 13.8 × 103 | –41.1 | 0.36 |
1 × 105 | 10.2 × 103 | –41 | 0.28 | 5 | 21.5 × 103 | –34 | 0.39 |
1 × 106 | 11.3 × 103 | –41 | 0.28 | 10 | 29.8 × 103 | –26 | 0.42 |
q3 | norm(Kf) | σmax | ξmin | R | norm(Kf) | σmax | ξmin |
1 × 10−2 | 9.7 × 103 | –40 | 0.26 | 1 × 10−2 | 99.3 × 103 | –42 | 0.48 |
1 × 10−1 | 9.7 × 103 | –40 | 0.27 | 1 × 10−1 | 36.5 × 103 | –42 | 0.47 |
1 | 9.7 × 103 | –40 | 0.28 | 1 | 12.1 × 103 | –42 | 0.32 |
2 | 9.8 × 103 | –40 | 0.28 | 2 | 8.5 × 103 | –41 | 0.25 |
5 | 9.9 × 103 | –42 | 0.28 | 5 | 5.3 × 103 | –31 | 0.17 |
10 | 10 × 103 | –31 | 0.28 | 10 | 3.8 × 103 | –23 | 0.12 |
100 | 10.7 × 103 | –10 | 0.28 | 100 | 1.3 × 103 | –7 | 0.03 |
Power System Parameters | Control Parameters | ||
---|---|---|---|
Nominal power (Pn) | 10 (kW) | Conventional control method | |
Nominal line voltage (vg) | 400 (V) | kpc, kic, | 9.425, 4.4 × 103 |
Grid frequency (f1) | 50 (Hz) | kpp, kip | 0.22, 9.9 |
Filter capacitor (Cf) | 10 (µF) | kpa, kia | 0, 4.8 |
Inverter-side inductor (Lf) | 2 (mH) | ka, ωa | 1, 6.6 × 103 |
Grid-side inductor (Lg) | 5–50 (mH) | kpd, kid | 0.13, 2.91 |
Grid SCR | 1–10 | kig | 6.1 |
The series resistance of Cf (rc) | 0.5 (mΩ) | Proposed control method | |
The series resistance of Lf (rf) | 1 (mΩ) | 1.5, 1 × 104 | r, q1 |
The series resistance of Lg (rg) | 1 (mΩ) | 1, 5 | q2, q3 |
DC-link capacitor (Cdc) | 1.5 [mF] | 0.22, 9.9 | kpp, kip |
DC-link voltage (vdc) | 700 (V) | Control delay | |
Sampling and switching frequencies | 10 (kHz) | 150 (µs) | Td |
Power System Parameters | Control Parameters | ||
---|---|---|---|
Nominal power (Pn) | 5 (kW) | Conventional control method | |
Nominal line voltage (vg) | 172 (V) | kpc, kic | 7.068, 3.3 × 103 |
Filter capacitor (Cf) | 30 (µF) | kpp, kip | 0.51, 22.95 |
Inverter-side inductor (Lf) | 1.5 (mH) | kpa, kia | 0, 30 |
Grid-side inductor (Lg) | 1.9–19 (mH) | kig | 3 |
DC-link voltage (vdc) | 600 (V) | Proposed control method | |
r, q1 | 2, 1 × 104 | kpp, kip | 0.51, 22.95 |
q2, q3 | 1, 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholami-Khesht, H.; Davari, P.; Wu, C.; Blaabjerg, F. A Systematic Control Design Method with Active Damping Control in Voltage Source Converters. Appl. Sci. 2022, 12, 8893. https://doi.org/10.3390/app12178893
Gholami-Khesht H, Davari P, Wu C, Blaabjerg F. A Systematic Control Design Method with Active Damping Control in Voltage Source Converters. Applied Sciences. 2022; 12(17):8893. https://doi.org/10.3390/app12178893
Chicago/Turabian StyleGholami-Khesht, Hosein, Pooya Davari, Chao Wu, and Frede Blaabjerg. 2022. "A Systematic Control Design Method with Active Damping Control in Voltage Source Converters" Applied Sciences 12, no. 17: 8893. https://doi.org/10.3390/app12178893
APA StyleGholami-Khesht, H., Davari, P., Wu, C., & Blaabjerg, F. (2022). A Systematic Control Design Method with Active Damping Control in Voltage Source Converters. Applied Sciences, 12(17), 8893. https://doi.org/10.3390/app12178893