Microdosimetry Study of Proton Quality Factor Using Analytic Model Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microdosimetric Calculations of Lineal Energy (y)
2.2. Generalized Analytic Microdosimetric Models
2.2.1. The Xapsos et al. 1994 Model
2.2.2. The Xapsos et al. 1996 Model
2.2.3. The Combined Xapsos Models
2.2.4. The Combined Xapsos-Olko Model
2.3. Methods for Calculating the Quality Factor (Q)
2.3.1. The TDRA Approach
2.3.2. The ICRU Report 40 Recommendation
2.3.3. The ICRP Report 60 Recommendation
2.4. Modifications of Model Parameters
3. Results
3.1. Dose-Averaged Lineal Energy and Quality Factor
3.2. Sensitivity of Results to Target Size
3.3. Sensitivity of Results to Condensed-Phase Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Diameter (d) in μm | Parameters | a | b | c | d |
---|---|---|---|---|---|
1 | 30.24 | 0.788 | 0.97 | 1 | |
36.20 | 1 | 0.514 | 0.744 | ||
0.1 | 25.89 | 1.024 | 6.470 | 1 | |
3.723 | 1.025 | 0.930 | 1 | ||
0.01 | 11.46 | 1.349 | 21.77 | 1 | |
0.540 | 1.380 | 1.030 | 1 |
References
- International Commission on Radiation Units and Measurements (Ed.) Microdosimetry; ICRU Report; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1983; ISBN 978-0-913394-30-4. [Google Scholar]
- Joint Task Group on Radiation Protection Quantities; International Commission on Radiological Protection; International Commission on Radiation Units and Measurements (Eds.) The Quality Factor in Radiation Protection: Report of a Joint Task Group of the ICRP and the ICRU to the ICRP and the ICRU; ICRU Report; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1986; ISBN 978-0-913394-34-2. [Google Scholar]
- International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection, 1st ed.; ICRP Publication Radiation Protection; Pergamon Press: Oxford, UK, 1991; ISBN 978-0-08-041144-6. [Google Scholar]
- ICRP. Recommendations of the ICRP; ICRP Publication 26; Pergamon Press: Oxford, UK, 1977. [Google Scholar]
- International Commission on Radiation Units and Measurements. Journal of the ICRU 2014, 14, NP.1-NP. Available online: https://journals.sagepub.com/description/cru (accessed on 20 August 2022).
- ICRP. Recommendations of the International Commission on Radiological Protection; ICRP Publication 9; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Wilkens, J.J.; Oelfke, U. A Phenomenological Model for the Relative Biological Effectiveness in Therapeutic Proton Beams. Phys. Med. Biol. 2004, 49, 2811–2825. [Google Scholar] [CrossRef] [PubMed]
- Carabe, A.; Moteabbed, M.; Depauw, N.; Schuemann, J.; Paganetti, H. Range Uncertainty in Proton Therapy Due to Variable Biological Effectiveness. Phys. Med. Biol. 2012, 57, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Wedenberg, M.; Lind, B.K.; Hårdemark, B. A Model for the Relative Biological Effectiveness of Protons: The Tissue Specific Parameter α/β of Photons Is a Predictor for the Sensitivity to LET Changes. Acta Oncol. 2013, 52, 580–588. [Google Scholar] [CrossRef] [PubMed]
- McNamara, A.L.; Schuemann, J.; Paganetti, H. A Phenomenological Relative Biological Effectiveness (RBE) Model for Proton Therapy Based on All Published in Vitro Cell Survival Data. Phys. Med. Biol. 2015, 60, 8399–8416. [Google Scholar] [CrossRef]
- Paganetti, H.; Blakely, E.; Carabe-Fernandez, A.; Carlson, D.J.; Das, I.J.; Dong, L.; Grosshans, D.; Held, K.D.; Mohan, R.; Moiseenko, V.; et al. Report of the AAPM TG-256 on the Relative Biological Effectiveness of Proton Beams in Radiation Therapy. Med. Phys. 2019, 46, e53–e78. [Google Scholar] [CrossRef]
- Kellerer, A.M.; Chmelevsky, D. Criteria for the Applicability of LET. Radiat. Res. 1975, 63, 226. [Google Scholar] [CrossRef]
- Rossi, H.H.; Zaider, M. Microdosimetry and Its Applications; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-85184-1. [Google Scholar]
- Kellerer, A.M. Fundamentals of Microdosimetry; Universitätsbibliothek der Ludwig-Maximilians-Universität München: München, Germany, 1985. [Google Scholar]
- Lindborg, L.; Lillhök, J.; Kyriakou, I.; Emfietzoglou, D. Dose-mean lineal energy values for electrons by different Monte Carlo codes: Consequences for estimates of radiation quality in photon beams. Med. Phys. 2022, 49, 1286–1296. [Google Scholar] [CrossRef]
- Rossi, H.H.; Rosenzweig, W. A Device for the Measurement of Dose as a Function of Specific Ionization. Radiology 1955, 64, 404–411. [Google Scholar] [CrossRef]
- Kellerer, A.M.; Rossi, H.H. A Generalized Formulation of Dual Radiation Action. Radiat. Res. 1978, 75, 471. [Google Scholar] [CrossRef]
- Hawkins, R.B. A Statistical Theory of Cell Killing by Radiation of Varying Linear Energy Transfer. Radiat. Res. 1994, 140, 366. [Google Scholar] [CrossRef]
- Hawkins, R.B. A Microdosimetric-Kinetic Theory of the Dependence of the RBE for Cell Death on LET. Med. Phys. 1998, 25, 1157–1170. [Google Scholar] [CrossRef]
- Hawkins, R.B. A Microdosimetric-Kinetic Model of Cell Death from Exposure to Ionizing Radiation of Any LET, with Experimental and Clinical Applications. Int. J. Radiat. Biol. 1996, 69, 739–755. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; To, K.; Cacao, E. Predictions of Space Radiation Fatality Risk for Exploration Missions. Life Sci. Space Res. 2017, 13, 1–11. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Cacao, E.; Alp, M. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor. Health Phys. 2016, 110, 262–266. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Kim, M.Y.; Chappell, L. Space Radiation Cancer Risk Projections and Uncertainties; NASA: Washington, DC, USA, 2013; p. 207375.
- Cucinotta, F.A. A New Approach to Reduce Uncertainties in Space Radiation Cancer Risk Predictions. PLoS ONE 2015, 10, e0120717. [Google Scholar] [CrossRef]
- Borak, T.B.; Heilbronn, L.H.; Townsend, L.W.; McBeth, R.A.; de Wet, W. Quality Factors for Space Radiation: A New Approach. Life Sci. Space Res. 2014, 1, 96–102. [Google Scholar] [CrossRef]
- Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. The GEANT4-DNA Project. Int. J. Model. Simul. Sci. Comput. 2010, 1, 157–178. [Google Scholar] [CrossRef]
- Uehara, S.; Nikjoo, H.; Goodhead, D.T. Cross-Sections for Water Vapour for the Monte Carlo Electron Track Structure Code from 10 EV to the MeV Region. Phys. Med. Biol. 1993, 38, 1841–1858. [Google Scholar] [CrossRef]
- Kundrát, P.; Friedland, W.; Becker, J.; Eidemüller, M.; Ottolenghi, A.; Baiocco, G. Analytical Formulas Representing Track-Structure Simulations on DNA Damage Induced by Protons and Light Ions at Radiotherapy-Relevant Energies. Sci. Rep. 2020, 10, 15775. [Google Scholar] [CrossRef]
- Sato, T.; Iwamoto, Y.; Hashimoto, S.; Ogawa, T.; Furuta, T.; Abe, S.; Kai, T.; Tsai, P.-E.; Matsuda, N.; Iwase, H.; et al. Features of Particle and Heavy Ion Transport Code System (PHITS) Version 3.02. J. Nucl. Sci. Technol. 2018, 55, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Dingfelder, M. Track-Structure Simulations for Charged Particles. Health Phys. 2012, 103, 590–595. [Google Scholar] [CrossRef]
- Nikjoo, H.; O’Neill, P.; Terrissol, M.; Goodhead, D.T. Modelling of Radiation-Induced DNA Damage: The Early Physical and Chemical Event. Int. J. Radiat. Biol. 1994, 66, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Perales, Á.; Baratto-Roldán, A.; Kimstrand, P.; Cortés-Giraldo, M.A.; Carabe, A. Parameterising Microdosimetric Distributions of Mono-Energetic Proton Beams for Fast Estimates of yD and y*. Biomed. Phys. Eng. Express 2019, 5, 045014. [Google Scholar] [CrossRef]
- Burigo, L.; Pshenichnov, I.; Mishustin, I.; Bleicher, M. Microdosimetry Spectra and RBE of 1H, 4He, 7Li and 12C Nuclei in Water Studied with Geant4. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 320, 89–99. [Google Scholar] [CrossRef]
- Newpower, M.; Patel, D.; Bronk, L.; Guan, F.; Chaudhary, P.; McMahon, S.J.; Prise, K.M.; Schettino, G.; Grosshans, D.R.; Mohan, R. Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Mokari, M.; Moeini, H.; Soleimani, M. Calculation of Microdosimetric Spectra for Protons Using Geant4-DNA and a μ-Randomness Sampling Algorithm for the Nanometric Structures. Int. J. Radiat. Biol. 2021, 97, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Liamsuwan, T.; Hultqvist, M.; Lindborg, L.; Uehara, S.; Nikjoo, H. Microdosimetry of Proton and Carbon Ions: Microdosimetry of P and C Beams. Med. Phys. 2014, 41, 081721. [Google Scholar] [CrossRef]
- Nikjoo, H.; Uehara, S.; Emfietzoglou, D.; Pinsky, L. A Database of Frequency Distributions of Energy Depositions in Small-Size Targets by Electrons and Ions. Radiat. Prot. Dosim. 2011, 143, 145–151. [Google Scholar] [CrossRef]
- Leuthold, G.; Burger, G. Mathematical Simulation of Proton Tracks in Water Vapor and Their Microdosimetric Analysis. Radiat. Environ. Biophys. 1988, 27, 177–187. [Google Scholar] [CrossRef]
- Lindborg, L.; Hultqvist, M.; Carlsson Tedgren, Å.; Nikjoo, H. Lineal Energy and Radiation Quality in Radiation Therapy: Model Calculations and Comparison with Experiment. Phys. Med. Biol. 2013, 58, 3089–3105. [Google Scholar] [CrossRef]
- Liamsuwan, T.; Uehara, S.; Emfietzoglou, D.; Nikjoo, H. Physical and Biophysical Properties of Proton Tracks of Energies 1 KeV to 300 MeV in Water. Int. J. Radiat. Biol. 2011, 87, 141–160. [Google Scholar] [CrossRef]
- Palajová, Z.; Spurný, F.; Davídková, M. Microdosimetry Distributions for 40–200 MeV Protons. Radiat. Prot. Dosim. 2006, 121, 376–381. [Google Scholar] [CrossRef]
- Francis, Z.; El Bitar, Z.; Incerti, S.; Bernal, M.A.; Karamitros, M.; Tran, H.N. Calculation of Lineal Energies for Water and DNA Bases Using the Rudd Model Cross Sections Integrated within the Geant4-DNA Processes. J. Appl. Phys. 2017, 122, 014701. [Google Scholar] [CrossRef]
- Chmelevsky, D.; Kellerer, A.M. Computation of Microdosimetric Distributions for Small Sites. Radiat. Environ. Biophys. 1977, 14, 123–136. [Google Scholar] [CrossRef]
- Chen, J. Microdosimetric Characteristics of Proton Beams from 50 KeV to 200 MeV. Radiat. Prot. Dosim. 2011, 143, 436–439. [Google Scholar] [CrossRef]
- Berger, M.J. Energy Loss Straggling of Protons in Water Vapour. Radiat. Prot. Dosim. 1985, 13, 87–90. [Google Scholar] [CrossRef]
- Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S. Radiation Track, DNA Damage and Response—A Review. Rep. Prog. Phys. 2016, 79, 116601. [Google Scholar] [CrossRef]
- Matsuya, Y.; Kai, T.; Sato, T.; Ogawa, T.; Hirata, Y.; Yoshii, Y.; Parisi, A.; Liamsuwan, T. Track-Structure Modes in Particle and Heavy Ion Transport Code System (PHITS): Application to Radiobiological Research. Int. J. Radiat. Biol. 2022, 98, 148–157. [Google Scholar] [CrossRef]
- Xapsos, M.A.; Burke, E.A.; Shapiro, P.; Summers, G.P. Energy Deposition and Ionization Fluctuations Induced by Ions in Small Sites: An Analytical Approach. Radiat. Res. 1994, 137, 152. [Google Scholar] [CrossRef]
- Xapsos, M.A.; Burke, E.A.; Shapiro, P.; Summers, G.P. Probability Distributions of Energy Deposition and Ionization in Sub-Micrometer Sites of Condensed Media. Radiat. Meas. 1996, 26, 1–9. [Google Scholar] [CrossRef]
- Badavi, F.F.; Xapsos, M.A.; Wilson, J.W. An Analytical Model for the Prediction of a Micro-Dosimeter Response Function. Adv. Space Res. 2009, 44, 190–201. [Google Scholar] [CrossRef]
- Shinn, J.L.; Badhwar, G.D.; Xapsos, M.A.; Cucinotta, F.A.; Wilson, J.W. An Analysis of Energy Deposition in a Tissue Equivalent Proportional Counter Onboard the Space Shuttle. Radiat. Meas. 1999, 30, 19–28. [Google Scholar] [CrossRef]
- Czopyk, L.; Olko, P. An Analytical Model for Calculating Microdosimetric Distributions from Heavy Ions in Nanometer Site Targets. Radiat. Prot. Dosim. 2006, 122, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Olko, P.; Booz, J. Energy Deposition by Protons and Alpha Particles in Spherical Sites of Nanometer to Micrometer Diameter. Radiat. Environ. Biophys. 1990, 29, 1–17. [Google Scholar] [CrossRef]
- Xapsos, M.A. A Spatially Restricted Linear Energy Transfer Equation. Radiat. Res. 1992, 132, 282. [Google Scholar] [CrossRef]
- Xapsos, M.A. Applicability of LET to Single Events in Microelectronic Structures. IEEE Trans. Nucl. Sci. 1992, 39, 1613–1621. [Google Scholar] [CrossRef]
- Kyriakou, I.; Tremi, I.; Georgakilas, A.G.; Emfietzoglou, D. Microdosimetric Investigation of the Radiation Quality of Low-Medium Energy Electrons Using Geant4-DNA. Appl. Radiat. Isot. 2021, 172, 109654. [Google Scholar] [CrossRef]
- Kyriakou, I.; Šefl, M.; Nourry, V.; Incerti, S. The Impact of New Geant4-DNA Cross Section Models on Electron Track Structure Simulations in Liquid Water. J. Appl. Phys. 2016, 119, 194902. [Google Scholar] [CrossRef]
- Emfietzoglou, D.; Kostarelos, K.; Hadjidoukas, P.; Bousis, C.; Fotopoulos, A.; Pathak, A.; Nikjoo, H. Subcellular S-Factors for Low-Energy Electrons: A Comparison of Monte Carlo Simulations and Continuous-Slowing-down Calculations. Int. J. Radiat. Biol. 2008, 84, 1034–1044. [Google Scholar] [CrossRef]
- International Commission on Radiation Units and Measurements (Ed.) Linear Energy Transfer; ICRU Report; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1970. [Google Scholar]
- Vassiliev, O.N.; Peterson, C.B.; Cao, W.; Grosshans, D.R.; Mohan, R. Systematic Microdosimetric Data for Protons of Therapeutic Energies Calculated with Geant4-DNA. Phys. Med. Biol. 2019, 64, 215018. [Google Scholar] [CrossRef]
Physical Parameters | Liquid Water | Vapor Water | Reference |
---|---|---|---|
I value (keV) | 0.078 | 0.071 | Liquid: ICRU Report 90 [5] Vapor: ICRU Report16 [59] |
Δ-cut off electron energy (keV) | 11.0 (d = 3 μm) 5.62 (d = 1 μm) 1.37 (d = 0.1 μm) 0.184 (d = 0.01 μm) | 11.1 (d = 3 μm) 5.93 (d = 1 μm) 1.50 (d = 0.1 μm) 0.288 (d = 0.01 μm) | Liquid: Kyriakou et al. (2016) [57] Vapor: Emfietzoglou et al. (2008) [58] |
δ2-energy-weighted mean energy deposited inside the target per collision (keV) | Protons: A = 0.195, B = 0.610 | Protons: A = 0.190, B = 0.620 | Liquid: Our fit Vapor: Xapsos et al. (1994) [48] |
Electrons: A = 0.121, B = 0.577 | Electrons: A = 0.114, B = 0.591 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, A.; Kyriakou, I.; Matsuya, Y.; Incerti, S.; Daglis, I.A.; Emfietzoglou, D. Microdosimetry Study of Proton Quality Factor Using Analytic Model Calculations. Appl. Sci. 2022, 12, 8950. https://doi.org/10.3390/app12188950
Papadopoulos A, Kyriakou I, Matsuya Y, Incerti S, Daglis IA, Emfietzoglou D. Microdosimetry Study of Proton Quality Factor Using Analytic Model Calculations. Applied Sciences. 2022; 12(18):8950. https://doi.org/10.3390/app12188950
Chicago/Turabian StylePapadopoulos, Alexis, Ioanna Kyriakou, Yusuke Matsuya, Sébastien Incerti, Ioannis A. Daglis, and Dimitris Emfietzoglou. 2022. "Microdosimetry Study of Proton Quality Factor Using Analytic Model Calculations" Applied Sciences 12, no. 18: 8950. https://doi.org/10.3390/app12188950
APA StylePapadopoulos, A., Kyriakou, I., Matsuya, Y., Incerti, S., Daglis, I. A., & Emfietzoglou, D. (2022). Microdosimetry Study of Proton Quality Factor Using Analytic Model Calculations. Applied Sciences, 12(18), 8950. https://doi.org/10.3390/app12188950