Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials
3. Methods
3.1. Software and Data Preprocessing
3.2. Color Space Transformation and Feature Extraction
3.3. Image Classification Based on SVM
3.4. Post Classification
3.5. Classification Accuracy Assessment
3.6. Statistical Analysis and Kernel Density Analysis
4. Results and Discussion
4.1. Accuracy Assessment
4.2. Image Classification Result and Statistical Analysis
4.3. Analysis of the Spatial Characteristics
5. Conclusions
- (1)
- Using an appropriate degree of image preprocessing and enhancement can meet geological research needs, and the overall accuracy and kappa coefficient are 82.86% and 0.80, respectively. This method is based on ENVI software and thus is replicable for geologists with little knowledge of machine learning theory. In addition, the map of classification results can illustrate the microscopic components of the source rock to other researchers.
- (2)
- Through statistical analysis of the classification results, it is possible to find that the organic matter and mineral areas vary in different laminae. Using this method can provide a new way for subsequent research on the combination of laminae and the difference between laminae in oil generation.
- (3)
- The spatial distribution of each component can be revealed by the presentation of the kernel density map: pyrite for the multi-core centers distribution, alginite and sporinite for the dotted distribution, and vitrinite for the stripe distribution, respectively; however, inertinite has no noticeable local enrichment. This discovery can assist in the follow-up study of the sedimentary environment of the laminae.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Q.H.; Quintero, R.P.; El-Sobky, H.F.; Kang, J.H.; Zhang, T. Coupled nano-petrophysical and organic-geochemical study of the Wolfberry Play in Howard County, Texas U.S.A. Mar. Pet. Geol. 2020, 122, 104663. [Google Scholar] [CrossRef]
- Shi, Z.S.; Dong, D.Z.; Wang, H.Y.; Sun, S.S.; Wu, J. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 888–900. [Google Scholar] [CrossRef]
- Xi, K.L.; Li, K.; Cao, Y.C.; Lin, M.R.; Niu, X.B.; Zhu, R.K.; Wei, X.Z.; You, Y.; Liang, X.W.; Feng, S.B. Laminae combination and shale oil enrichment patterns of Chang 7(3) sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2020, 47, 1342–1353. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.J.; Jiang, L.; George, S.C. Organic petrology and geochemistry of Lower Cretaceous lacustrine sediments in the Chaoyang Basin (Liaoning Province, northeast China): Influence of volcanic ash on algal productivity and oil shale formation. Int. J. Coal Geol. 2021, 233, 103653. [Google Scholar] [CrossRef]
- Lin, S.H.; Yang, Z.; Hou, L.H.; Luo, X.; Liu, Q. Geostatistic recognition of genetically distinct shale facies in upper Triassic chang 7 section, the Ordos Basin, North China. Mar. Pet. Geol. 2019, 102, 176–186. [Google Scholar]
- Lohr, C.D.; Valentine, B.J.; Hackley, P.C.; Dulong, F.T. Characterization of the unconventional Tuscaloosa marine shale reservoir in southwestern Mississippi, USA: Insights from optical and SEM petrography. Mar. Pet. Geol. 2020, 121, 104580. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Gong, L.; Qu, Y.S.; Zhang, K.H.; Zhang, G.L.; Wang, S.Z. The tight oil potential of the Lucaogou Formation from the southern Junggar Basin, China. Fuel 2018, 234, 858–871. [Google Scholar] [CrossRef]
- Mathews, R.P.; Singh, B.D.; Singh, V.P. Evaluation of Organic Matter, Hydrocarbon Source, and Depositional Environment of Onshore Warkalli Sedimentary Sequence from Kerala-Konkan Basin, South India. J. Geol. Soc. India. 2018, 92, 407–418. [Google Scholar] [CrossRef]
- Wang, S.Q.; Tang, Y.G.; Schobert, H.H.; Jiang, Y.F.; Yang, Z.D.; Zhang, X.M. Petrologic and organic geochemical characteristics of Late Permian bark coal in Mingshan coalmine, Southern China. Mar. Pet. Geol. 2018, 93, 205–217. [Google Scholar] [CrossRef]
- Qiao, J.Q.; Liu, L.F.; Shang, X.Q. Deposition conditions of the Jurassic lacustrine source rocks in the East Fukang Sag, Junggar Basin, NW China: Evidence from major and trace elements. Geol. J. 2019, 55, 4936–4953. [Google Scholar] [CrossRef]
- Ko, L.T.; Ruppel, S.C.; Loucks, R.G.; Hackley, P.C.; Zhang, T.W.; Shao, D.Y. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology. Int. J. Coal Geol. 2018, 190, 3–28. [Google Scholar] [CrossRef]
- Yan, Y.X.; Qi, Y.; Marshall, M.; Jackson, W.R.; Chaffee, A.L. Separation and analysis of maceral concentrates from Victorian brown coal. Fuel 2019, 242, 232–242. [Google Scholar] [CrossRef]
- Kwiecińska, B.; Petersen, H.I. Graphite, semi-graphite, natural coke, and natural char classification—ICCP system. Int. J. Coal Geol. 2004, 57, 99–116. [Google Scholar] [CrossRef]
- ASTM D2799-13; Standard Test Method for Microscopical Determination of the Maceral Composition of Coal. ASTM International: West Conshohocken, PA, USA, 2013.
- Ma, W.J.; Cao, Y.C.; Xi, K.L.; Liu, K.Y.; Lin, M.R.; Liu, J.Z. Interactions between mineral evolution and organic acids dissolved in bitumen in hybrid shale system. Int. J. Coal Geol. 2022, 260, 104071. [Google Scholar] [CrossRef]
- Mlynarczuk, M.; Skiba, M. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal. Comput. Geosci. 2017, 103, 133–141. [Google Scholar] [CrossRef]
- Wang, P.Z.; Yin, Z.H.; Wang, G.; Zhang, D.L. A classification method of vitrinite for coal macerals based on the PCA and RBF-SVM. J. China Coal Soc. 2017, 42, 977–984. [Google Scholar]
- Skiba, M.; Mlynarczuk, M. Identification of macerals of the inertinite group using neural classifiers, based on selected textural features. Arch. Min. Sci. 2018, 63, 827–837. [Google Scholar]
- Liu, M.; Wang, P.Z.; Chen, S.M.; Zhang, D.L. The Classification of Inertinite Macerals in Coal Based on the Multifractal Spectrum Method. Appl. Sci. 2019, 9, 5509. [Google Scholar] [CrossRef]
- Wang, H.D.; Lei, M.; Chen, Y.L.; Li, M.; Zou, L. Intelligent Identification of Maceral Components of Coal Based on Image Segmentation and Classification. Appl. Sci. 2019, 9, 3245. [Google Scholar] [CrossRef]
- Lei, M.; Rao, Z.Y.; Wang, H.D.; Chen, Y.L.; Zou, L.; Yu, H. Maceral groups analysis of coal based on semantic segmentation of photomicrographs via the improved U-net. Fuel 2021, 294, 120475. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Ntaflos, T.; Sami, M. Paleoclimatic variability in the southern Tethys, Egypt: Insights from the mineralogy and geochemistry of Upper Cretaceous lacustrine organic-rich deposits. Cretaceous Res. 2021, 126, 104880. [Google Scholar] [CrossRef]
- Li, Y.J.; Xu, F.B.; Zeng, L.Y.; Zhang, W.J.; Li, M.L.; Liao, Y.S.; Chen, W.D. Gas source in lower Permian Maokou Formation and gas accumulation in the syncline area of eastern Sichuan basin. J. Pet. Sci. Eng. 2021, 206, 109044. [Google Scholar]
- Omer, I.; Eswaran, P.; Ajay, M.; Jack, D. Characterization of geochemical properties and factors controlling the pore structure development of shale gas reservoirs. J. Pet. Sci. Eng. 2021, 206, 109001. [Google Scholar]
- Gorbanenko, O.O.; Ligouis, B. Changes in optical properties of liptinite macerals from early mature to post mature stage in Posidonia Shale (Lower Toarcian, NW Germany). Int. J. Coal Geol. 2014, 133, 47–59. [Google Scholar] [CrossRef]
- Varma, A.K.; Mishra, D.K.; Samad, S.K.; Prasad, A.K.; Panigrahi, D.C.; Mendhe, V.A.; Singh, B.D. Geochemical and organo-petrographic characterization for hydrocarbon generation from Barakar Formation in Auranga Basin, India. Int. J. Coal Geol. 2018, 186, 97–114. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Zhang, L.; Zhong, N.; Wu, J.; Goodarzi, F.; Sanei, H.; Skovsted, C.B.; Suchý, V.; Li, M.J.; Ye, X.Z.; et al. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation. Int. J. Coal Geol. 2021, 244, 103813. [Google Scholar] [CrossRef]
- ISO 7404-2:2009; Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 2: Method of Preparing Coal Samples. International Organization for Standardization: Geneva, Switzerland, 2009.
- Banerjee, K.; Krishnan, P.; Mridha, N. Application of thermal imaging of wheat crop canopy to estimate leaf area index under different moisture stress conditions. Biosyst. Eng. 2018, 166, 13–27. [Google Scholar] [CrossRef]
- Xiong, L.I.; Liu, Y.D.; Ouyang, A.G.; Sun, X.D.; Jiang, X.G.; Jun, H.U.; Ouyang, Y.P. Study on Non-Destructive Testing Model of Hyperspectral Imaging for Shelf Life of Crisp Pear. Spectrosc. Spectral Anal. 2019, 39, 2578–2583. [Google Scholar]
- Kang, H.C.; Han, H.N.; Bae, H.C.; Kim, M.G.; Son, J.Y.; Kim, Y.K. HSV Color-Space-Based Automated Object Localization for Robot Grasping without Prior Knowledge. Appl. Sci. 2021, 11, 7593. [Google Scholar] [CrossRef]
- Zhu, X.L.; Bao, W.X. Comparison of Remote Sensing Image Fusion Strategies Adopted in HSV and IHS. J. Indian Soc. Remote Sens. 2018, 46, 377–385. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Eng. Remote Sens. 2010, 66, 247–259. [Google Scholar] [CrossRef]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Forlin, P.; Gerrard, C.; Petley, D. Exploring representativeness and reliability for late medieval earthquakes in Europe. Nat. Hazards 2016, 84, 1625–1636. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Feng, Z.Q.; Zhang, H.Y.; Zhao, J.J.; Yu, S.; Du, W. Spatial distribution of grassland fires at the regional scale based on the MODIS active fire products. Int. J. Wildland Fire 2017, 26, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Mastalerz, M.; Liu, B. Petrographic and chemical structure characteristics of amorphous organic matter in marine black shales: Insights from Pennsylvanian and Devonian black shales in the Illinois Basin. Int. J. Coal Geol. 2021, 235, 103676. [Google Scholar] [CrossRef]
- Liu, C. Sedimentary environment and micro-sediment characteristics of Oligocene source rocks in Qiongdongnan Basin. Acta Pet. Sin. 2010, 31, 573–578. [Google Scholar]
- Wu, J.; Li, H.; Goodarzi, F.; Min, X.; Cao, W.X.; Huang, L.J.; Pan, Y.Y.; Luo, Q.Y. Geochemistry and depositional environment of the Mesoproterozoic Xiamaling shales, northern North China. J. Pet. Sci. Eng. 2022, 215, 110730. [Google Scholar] [CrossRef]
- Shi, Z.S.; Qiu, Z.; Dong, D.Z.; Lu, B.; Liang, P.P.; Zhang, M.Q. Lamina characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China. Pet. Explor. Dev. 2018, 45, 358–368. [Google Scholar] [CrossRef]
Categories | Pyrite | AOM | MM | Alginite | Sporinite | Vitrinite | Inertinite |
---|---|---|---|---|---|---|---|
Pyrite | 45 | 0 | 4 | 0 | 0 | 0 | 1 |
AOM | 0 | 47 | 1 | 0 | 1 | 1 | 0 |
MM | 1 | 0 | 49 | 0 | 0 | 0 | 0 |
Alginite | 0 | 2 | 5 | 43 | 0 | 0 | 0 |
Sporinite | 0 | 13 | 1 | 1 | 35 | 0 | 0 |
Vitrinite | 0 | 0 | 5 | 0 | 0 | 40 | 5 |
Inertinite | 13 | 0 | 5 | 0 | 0 | 1 | 31 |
Evaluation Metrics | Pyrite | AOM | MM | Alginite | Sporinite | Vitrinite | Inertinite | Overall |
---|---|---|---|---|---|---|---|---|
Precision | 76.27% | 75.81% | 70.00% | 97.73% | 97.22% | 95.24% | 83.78% | 85.15% |
Recall | 90.00% | 94.00% | 98.00% | 86.00% | 70.00% | 80.00% | 62.00% | 82.86% |
F1 | 82.57% | 83.93% | 81.67% | 91.49% | 81.39% | 86.96% | 71.26% | 82.75% |
Overall accuracy | 82.86% | Kappa, K | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Fan, Y.; Liu, Y.; Li, K.; Zeng, T.; Ma, Y.; Tian, Y.; Xu, Y.; Wen, Z.; Xie, X.; et al. Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine. Appl. Sci. 2022, 12, 9046. https://doi.org/10.3390/app12189046
Wu Y, Fan Y, Liu Y, Li K, Zeng T, Ma Y, Tian Y, Xu Y, Wen Z, Xie X, et al. Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine. Applied Sciences. 2022; 12(18):9046. https://doi.org/10.3390/app12189046
Chicago/Turabian StyleWu, Yuanzhe, Yunpeng Fan, Yan Liu, Kewen Li, Tingxiang Zeng, Yong Ma, Yongjing Tian, Yaohui Xu, Zhigang Wen, Xiaomin Xie, and et al. 2022. "Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine" Applied Sciences 12, no. 18: 9046. https://doi.org/10.3390/app12189046
APA StyleWu, Y., Fan, Y., Liu, Y., Li, K., Zeng, T., Ma, Y., Tian, Y., Xu, Y., Wen, Z., Xie, X., & Teng, J. (2022). Quantitative Study of the Maceral Groups of Laminae Based on Support Vector Machine. Applied Sciences, 12(18), 9046. https://doi.org/10.3390/app12189046