Towards the Integration and Automation of the Design Process for Domestic Drinking-Water and Sewerage Systems with BIM
Abstract
:1. Introduction
2. Research Methodology
- Defining the format for the input data of the project so that it corresponds to parameters obtained both directly and indirectly from the three-dimensional model;
- Defining the way to extract these data into spreadsheets, if required;
- Defining the procedure for transferring the complementary project information that corresponds to the indirect input data of the model—i.e., project characteristics that cannot be obtained from the model and must be entered by the user;
- Determining the iterative method for the calculation and verification of the resulting parameters as a convergence process;
- Defining the method for the insertion of data into the BIM software, which are then returned to the model and modify the initial values of the project—for instance, pipe diameters;
- Configuring deliverables corresponding to floor plans and tabulations with results in a standard plan, as defined by the RIDAA.
3. Background
3.1. Digitalisation of the Construction Sector
3.2. Traditional Design Method for DDWSSs
- The design process starts with interpreting two-dimensional models (2D/CAD) and visualising and locating relevant data according to the potential input parameters presented in the project floor plan, such as types of plumbing fixtures, locations, quantities, rooms, equipment and other operational function requirements;
- Specialist sub-contractors use this information to develop their system routing, connecting elements of all building systems in compliance with architectural and structural designs [29]. Then, spreadsheets are commonly used to discretise data about piping systems, adding conditions and general project specifications that are not incorporated in the data extracted from the layout [6,28];
- These spreadsheets, as shown in RIDAA’s content, represent the official calculation and presentation formats. The system, material and geometric parameters of pipe paths are adjusted until an optimal solution is reached: the process is repeated until design parameters reach acceptable values according to the code ranges for pressure/flow rates and slopes in drinking water networks and drainage networks, respectively [26];
- Finally, contractors summarise and compile results, incorporating them into a two-dimensional model of the floor plans, elevations and isometrics, according to the symbology defined by the standards. This symbology is established for the water supply and sanitary treatment companies in the area, which are responsible for providing and maintaining connections with the public network.
3.3. BIM as a DDWSS Design Tool
4. Proposed Workflow for DDWSS Design
4.1. Inputs for Automation
4.2. Data Processing and Parameter Management
4.3. Output Documentation
5. Case Study
5.1. Drinking-Water System Calculation
5.1.1. Drinking-Water System Calculation—Case Study 1
5.1.2. Drinking-Water System Calculation—Case Study 2
5.2. Sewage System Calculation
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Abdelhameed, W.; Saputra, W. Integration of building service systems in architectural design. J. Inf. Technol. Constr. 2020, 25, 109–122. [Google Scholar] [CrossRef]
- Filho, J.B.P.D.; Angelim, B.M.; Guedes, J.P.; De Castro, M.A.F.; Neto, J.D.P.B. Virtual design and construction of plumbing systems. Open Eng. 2016, 6, 730–736. [Google Scholar] [CrossRef]
- Palomera-Arias, R.; Liu, R. BIM laboratory exercises for a MEP systems course in a construction science and management program. J. Inf. Technol. Constr. 2016, 21, 188–203. [Google Scholar]
- Zhang, J.; Seet, B.C.; Lie, T.T. Building information modelling for smart built environments. Buildings 2015, 5, 100–115. [Google Scholar] [CrossRef]
- Diao, P.H.; Shih, N.J. BIM-based AR maintenance system (BARMS) as an intelligent instruction platform for complex plumbing facilities. Appl. Sci. 2019, 9, 1592. [Google Scholar] [CrossRef]
- Loyola, M. Encuesta Nacional BIM 2019; Universidad de Chile-Plan BIM: Santiago, Chile, 2019. [Google Scholar]
- Peffers, K.; Tuunanen, T.; Gengler, C.E.; Rossi, M.; Hui, W.; Virtanen, V.; Bragge, J. The Design Science Research Process: A Model for Producing and Presenting Information Systems Research. In Proceedings of the 1st International Conference, DESRIST 2006 Proceedings, Claremont, CA, USA, 24–25 February 2006; Claremont Graduate University: Claremont, CA, USA; pp. 83–106. Available online: http://urn.fi/URN:NBN:fi:jyu-201904092111 (accessed on 8 September 2022).
- SISS Domestic Drinking Water and Sewerage Systems Chilean Standard Catalog. Available online: https://www.siss.gob.cl/586/w3-article-4152.html (accessed on 8 September 2022).
- Xie, H.; Tramel, J.M.; Shi, W. Building information modeling and simulation for the mechanical, electrical, and plumbing systems. In Proceedings of the 2011 IEEE International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011; Volume 3, pp. 77–80. [Google Scholar] [CrossRef]
- Xiao, Y.Q.; Li, S.W.; Hu, Z.Z. Automatically generating a MEP logic chain from building information models with identification rules. Appl. Sci. 2019, 9, 2204. [Google Scholar] [CrossRef]
- Wang, B.; Yin, C.; Luo, H.; Cheng, J.C.P.; Wang, Q. Fully automated generation of parametric BIM for MEP scenes based on terrestrial laser scanning data. Autom. Constr. 2021, 125, 103615. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Shou, W.; Chong, H.Y.; Guo, J. Building information modeling-based integration of MEP layout designs and constructability. Autom. Constr. 2016, 61, 134–146. [Google Scholar] [CrossRef]
- Chen, Q.; García de Soto, B.; Adey, B.T. Construction automation: Research areas, industry concerns and suggestions for advancement. Autom. Constr. 2018, 94, 22–38. [Google Scholar] [CrossRef]
- Muñoz-La Rivera, F.; Vielma, J.C.; Herrera, R.F.; Carvallo, J. Methodology for Building Information Modeling (BIM) implementation in structural engineering companies (SECs). Adv. Civ. Eng. 2019, 2019, 8452461. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Xu, J.; Pan, W.; Zhang, Y. A systematic review of the integration of building information modeling into life cycle assessment. Build. Environ. 2022, 221, 109260. [Google Scholar] [CrossRef]
- Herrera, R.F.; Morgues, C.; Alarcón, L.F.; Pellicer, E. Analyzing the association between lean design management practices and BIM uses in the design of construction projects. J. Constr. Eng. Manag. 2021, 147, 1–11. [Google Scholar] [CrossRef]
- Leygonie, R.; Motamedi, A.; Iordanova, I. Developments in the built environment development of quality improvement procedures and tools for facility management BIM. Dev. Built Environ. 2022, 11, 100075. [Google Scholar] [CrossRef]
- Collao, J.; Lozano-galant, F.; Lozano-galant, J.A. BIM Visual programming tools applications in infrastructure projects: A state-of-the-art review. Appl. Sci. 2021, 11, 8343. [Google Scholar] [CrossRef]
- Žurić, J.; Zichi, A.; Azenha, M. Integrating HBIM and sustainability certification: A pilot study using GBC historic building certification. Int. J. Archit. Herit. 2022, 1–20. [Google Scholar] [CrossRef]
- Potrč Obrecht, T.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA integration: A systematic literature review. Sustainability 2020, 12, 5534. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, J. A new framework to address BIM interoperability in the AEC domain from technical and process dimensions. Adv. Civ. Eng. 2021, 2021, 8824613. [Google Scholar] [CrossRef]
- Bastos Porsani, G.; de Lersundi, K.; Sánchez-Ostiz Gutiérrez, A.; Fernández Bandera, C. Interoperability between building information modelling (BIM) and building energy model (BEM). Appl. Sci. 2021, 11, 2167. [Google Scholar] [CrossRef]
- Bellido-montesinos, P.; Lozano-galant, F.; Javier, F.; Lozano-galant, J.A. Experiences learned from an international BIM contest: Software use and information work fl ow analysis to be published in: Journal of Building Engineering. J. Build. Eng. 2019, 21, 149–157. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, J.; Fu, X.; Zhang, R.; Zhu, H.; Bao, Q. Automated rule checking for MEP systems based on BIM and KBMS. Buildings 2022, 12, 934. [Google Scholar] [CrossRef]
- García, D. Aplicacion de BIM a Instalaciones Hidráulicas en Edificacion; Universidad de Valladolid: Valladolid, Spain, 2019. [Google Scholar]
- Ministerio de Obras Públicas de Chile. Reglamento de Instalaciones Domicliarias de Agua Potable y Alcantarillado (RIDAA); Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 2009. [Google Scholar]
- Council, I.C. International Plumbing Code; ICC: Washington, DC, USA, 2012; ISBN 9781580017428. [Google Scholar]
- CNP. Productividad en el Sector de la Construcción; Santiago de Chile: Santiago, Chile, 2020. [Google Scholar]
- Lu, Q.; Wong, Y.H. A BIM-based approach to automate the design and coordination process of mechanical, electrical, and plumbing systems. HKIE Trans. 2018, 25, 273–280. [Google Scholar] [CrossRef]
- Han, J.; Zhou, X.; Zhang, W.; Guo, Q.; Wang, J.; Lu, Y. Directed representative graph modeling of MEP systems using BIM data. Buildings 2022, 12, 834. [Google Scholar] [CrossRef]
- Wei, T.; Chen, G.; Wang, J. Application of BIM technology in water supply and drainage design. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, VA, USA, 2017. [Google Scholar]
- Kalasapudi, V.S.; Turkan, Y.; Tang, P. Toward automated spatial change analysis of MEP components using 3D point clouds and as-designed BIM models. In Proceedings of the 2014 2nd International Conference on 3D Vision, Tokyo, Japan, 8–11 December 2014; pp. 145–152. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Yuan, S.; Benghi, C.; Zhang, J.P.; Zhang, X.Y.; Li, D.; Kassem, M. Geometric optimization of building information models in MEP projects: Algorithms and techniques for improving storage, transmission and display. Autom. Constr. 2019, 107, 102941. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C.P. Origins and probabilities of MEP and structural design clashes within a federated BIM model. Autom. Constr. 2018, 85, 209–219. [Google Scholar] [CrossRef]
- Vasilev, L. Parametric Modeling in Structural Design. Thesis, LAB University of Applied Sciences, Lahti, Finland, 2020. Available online: https://www.theseus.fi/bitstream/handle/10024/349329/Parametricmodelinginstructuraldesign.pdf?sequence=2 (accessed on 8 September 2022).
- Stine, D. Autodesk Revit for Architecture Certified User Exam Preparation; SDC: Nashville, TN, USA, 2021. [Google Scholar]
- Jezyk, M. Dynamo Primer guide. Available online: https://primer.dynamobim.org/ (accessed on 8 September 2022).
- Wei, L.; Liu, S.; Wei, Q.; Wang, Y. Concept, method and application of computational BIM. Adv. Intell. Syst. Comput. 2020, 1084, 392–398. [Google Scholar] [CrossRef]
- Hofmann, P.; Samp, C.; Urbach, N. Robotic process automation. Electron. Mark. 2020, 30, 99–106. [Google Scholar] [CrossRef]
- Parti, R.; Hauer, S.; Monsberger, M. Process model for BIM-based MEP design. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012045. [Google Scholar] [CrossRef]
- Nezamaldin, D. Parametric Design with Visual Programming in Dynamo with Revit: The Conversion from CAD Models to BIM and the Design of Analytical Applications. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2019; 84p. [Google Scholar]
- Hu, Y.; Castro-Lacouture, D.; Eastman, C.M. Holistic clash detection improvement using a component dependent network in BIM projects. Autom. Constr. 2019, 105, 102832. [Google Scholar] [CrossRef]
- Ciribini, A.L.C.; Ventura, S.M.; Paneroni, M. Implementation of an interoperable process to optimise design and construction phases of a residential building: A BIM Pilot Project. Autom. Constr. 2016, 71, 62–73. [Google Scholar] [CrossRef]
- Merschbrock, C.; Erik, B. Effective digital collaboration in the construction industry—A case study of BIM deployment in a hospital construction project. Comput. Ind. 2015, 73, 1–7. [Google Scholar] [CrossRef]
- Autodesk Bymorph Nodes for Dynamo BIM. Available online: https://bimorph.com/bimorph-nodes/ (accessed on 2 September 2022).
Reference | Aim | Modelling Software | Visual Programming Language Software |
---|---|---|---|
[17] | Facility management | Revit, Solibri | Dynamo |
[18] | State of the art review | Revit, Robot, Tricalc | Dynamo, Grasshoper |
[19] | Heritage | Revit | Dynamo |
[20] | State of the art review | Revit, Rhino, Archicad | Dynamo, Grasshoper |
[21] | Coordination | Revit, Robot | - |
[22] | Interoperability study | Revit, gbXML, IFC | EnergyPlus engine |
[23] | State of the art review | Revit, Archicad, IFC | Dynamo, Grasshoper |
[15] | State of the art review | Revit, Rhino, Archicad | Dynamo, Grasshoper |
[19] | State of the art review | Revit, Solibri, Archicad | Dynamo, Grasshoper |
[24] | MEP | Revit | Dynamo |
Plumbing Fixture | Abbreviation Used | Plumbing Fixture | Abbreviation Used |
---|---|---|---|
Trough | BE | Glasswasher | LC |
Bidet | BI | Handwasher | LO |
Bathtub | BO | Dishwasher | LP |
Rain shower | BOLL | Laundry | LV |
Shower with perforated pipe | BP | Dishwashing machine | LVV |
Heater | CAL | Washing machine | MLV |
Wet net | GRH | Urinal | UR |
Yard tap 13 (mm) | LLJ13 | Urinal with perforated pipe | URP |
Yard tap 19 (mm) | LLJ19 | Toilet | WC |
Building Type | Subtype | Endowment |
---|---|---|
Social housing | Not applicable | 70 Lt/inhab/day |
Single-family house | With one bathroom, a kitchen and a washing machine | 250 Lt/inhab/day |
With two and a half bathrooms, a kitchen and a washing machine | 300 Lt/inhab/day | |
With two bathrooms, a kitchen and a washing machine | 350 Lt/inhab/day | |
With three bathrooms, a kitchen and a washing machine | 400 Lt/inhab/day | |
With more than three bathrooms, a kitchen and a washing machine | 450 Lt/inhab/day | |
Single-start apartment building | Not applicable | 450 Lt/inhab/day |
Apartment building with an independent meter or sub-meter | Not applicable | Endowment varies by department and according to the subtypes applied for single-family dwellings |
Commercial or office premises | Occupation per employee | 150 Lt/inhab/day |
Occupancy by surface area | 10 Lt/m2/day | |
Bar, restaurant, fountain and similar | Not applicable | 40 Lt/m2/day |
Diameter (mm) | Maximum Daily Consumption (m3/day) | Probable Maximum Consumption (L/min) |
---|---|---|
13 | 3 | 50 |
19 | 5 | 80 |
25 | 7 | 117 |
38 | 20 | 333 |
50 | 30 | 500 |
Type of Data | Purpose | Adaptations |
---|---|---|
Drinking water supply ranges | Maximum daily consumption calculation | Interpolated values of endowments in single-family dwellings are calculated according to the number of existing bathrooms |
Accessory loss coefficients | Singular loss calculation | No adaptations |
Pipe materials and diameters | Determination of frictional losses and flow velocity | Limitations imposed by the regulations and the commercial diameters available in Chile |
Consumption according to the type of sanitary appliance | Calculation of installed and probable maximum flow rates | No adaptations |
Common artefact elevations | Calculation of elevation losses | An average elevation is assumed based on architecture and depending on the type of artefact |
Building Type | Subtype | Number of Occupants | Garden or Lawn Surface | Recirculating Pool Volume | Pool Volume without Recirculation | Firefighting Network |
---|---|---|---|---|---|---|
Single-family house | House with one and a half bathrooms | Five residents | 20 m2 | 0 | 0 | 0 |
Plumbing Fixture | Acronym | Plumbing Fixture Supply (Lt/min) | Cold Water Quantity | Hot Water Quantity | Supply (Lt/min) |
---|---|---|---|---|---|
Toilet | WC | 10 | 2 | 0 | 20 |
Yard tap | LLJ13 | 20 | 1 | 0 | 20 |
Handwasher | LO | 8 | 2 | 1 | 24 |
Bathtub | BO | 15 | 1 | 1 | 30 |
Washing machine | MLV | 15 | 1 | 1 | 30 |
Dishwasher | LP | 12 | 1 | 1 | 24 |
Total installed flow (L/min) | 148 |
Water-Meter Calculation Report | |
---|---|
System installed flow rate | 148.00 Lt/min |
Maximum probable flow rate | 54.43 Lt/min |
Meter diameter | 19.00 mm |
Maximum daily consumption | 5 m3/day |
Meter head loss | 4.27 mca |
Segment | Material | Type | Length (m) | Diameter (mm) | Speed (m/s) | Total Loss (mca) | Final Pressure (mca) | |
---|---|---|---|---|---|---|---|---|
MAP | A | Copper | Cu L | 2.19 | 25 | 1.70 | 1.92 | 12.08 |
A | B | Copper | Cu L | 3.40 | 25 | 1.54 | 0.69 | 11.40 |
B | C | Copper | Cu L | 3.52 | 25 | 1.28 | 0.42 | 10.98 |
C | D | Copper | Cu L | 2.93 | 19 | 1.03 | 0.86 | 10.12 |
D | E | Copper | Cu L | 0.63 | 19 | 0.80 | 0.08 | 10.04 |
E | F | Copper | Cu L | 1.00 | 19 | 0.60 | 0.04 | 9.99 |
F | BO | Copper | Cu L | 1.90 | 13 | 1.25 | 3.17 | 6.83 |
E | LO | Copper | Cu L | 0.80 | 13 | 0.81 | 1.27 | 8.76 |
D | WC | Copper | Cu L | 0.40 | 13 | 0.94 | 0.77 | 9.35 |
C | G | Copper | Cu L | 0.93 | 19 | 1.65 | 0.47 | 10.50 |
G | T | Copper | Cu L | 1.26 | 19 | 0.60 | 0.06 | 10.44 |
T | MLV | Copper | Cu L | 1.10 | 13 | 1.25 | 2.23 | 8.21 |
G | H | Copper | Cu L | 0.84 | 19 | 1.37 | 0.17 | 10.33 |
H | CAL | Copper | Cu L | 1.40 | 19 | 1.37 | 2.72 | 7.61 |
B | P | Copper | Cu L | 1.26 | 19 | 0.97 | 0.15 | 11.25 |
P | R | Copper | Cu L | 8.02 | 19 | 0.68 | 0.35 | 10.90 |
R | S | Copper | Cu L | 0.60 | 19 | 0.45 | 0.03 | 10.87 |
S | WC | Copper | Cu L | 0.40 | 13 | 0.94 | 0.75 | 10.12 |
R | LO | Copper | Cu L | 0.80 | 13 | 0.81 | 1.30 | 9.60 |
P | Q | Copper | Cu L | 1.64 | 19 | 0.51 | 0.19 | 11.06 |
Q | LP | Copper | Cu L | 0.80 | 13 | 1.07 | 1.59 | 9.46 |
A | LLJ13 | Copper | Cu L | 0.60 | 13 | 1.52 | 2.29 | 9.80 |
Segment | Material | Type | Length (m) | Diameter (mm) | Speed (m/s) | Total Loss (mca) | Final Pressure (mca) | |
---|---|---|---|---|---|---|---|---|
CAL | I | Copper | Cu L | 1.40 | 19 | 1.37 | −0.37 | 7.98 |
I | J | Copper | Cu L | 1.05 | 19 | 1.37 | 0.23 | 7.75 |
J | O | Copper | Cu L | 1.30 | 19 | 0.60 | 0.06 | 7.69 |
O | MLV | Copper | Cu L | 1.10 | 13 | 1.25 | 2.23 | 5.46 |
J | K | Copper | Cu L | 0.88 | 19 | 1.07 | 0.16 | 7.59 |
K | N | Copper | Cu L | 6.31 | 19 | 0.51 | 0.20 | 7.39 |
N | LP | Copper | Cu L | 0.80 | 13 | 1.07 | 1.59 | 5.79 |
K | L | Copper | Cu L | 3.61 | 19 | 0.80 | 0.26 | 7.33 |
L | LO | Copper | Cu L | 0.80 | 13 | 0.81 | 1.27 | 6.06 |
L | M | Copper | Cu L | 1.00 | 19 | 0.60 | 0.06 | 7.27 |
M | BO | Copper | Cu L | 1.90 | 13 | 1.25 | 3.17 | 4.10 |
Building Type | Subtype | Number of Occupants | Garden or Lawn Surface | Recirculating Pool Volume | Pool Volume without Recirculation | Firefighting Network |
---|---|---|---|---|---|---|
Commercial or office premises | Occupancy by surface area | 321.5 m2 | 20 m2 | 0 | 0 | 200 Lt/Min |
Plumbing Fixture | Acronym | Plumbing Fixture Flow Rate (Lt/min) | Cold Water Quantity | Hot Water Quantity | Final Flow Rate (Lt/min) |
---|---|---|---|---|---|
Toilet | WC | 10 | 6 | 0 | 60 |
Handwasher | LO | 8 | 6 | 6 | 96 |
Rain shower | BOLL | 10 | 6 | 6 | 120 |
Dishwasher | LP | 12 | 4 | 4 | 96 |
Wet net | 200 | ||||
Total installed flow (Lt/min) | 572 |
Meter Calculation Report | |
---|---|
System installed flow rate | 572.00 Lt/min |
Maximum probable flow rate | 138.13 Lt/min |
Meter diameter | 38.00 mm |
Maximum daily consumption | 20.00 m3/day |
Meter head loss | 1.72 mca |
Plumbing Fixture | Acronym | Plumbing Fixture Flow Rate (Lt/min) | Cold Water Quantity | Hot Water Quantity | Final Flow (Lt/min) |
---|---|---|---|---|---|
Toilet | WC | 10 | 1 | 0 | 10 |
Handwasher | LO | 8 | 1 | 1 | 16 |
Rain shower | BOLL | 10 | 1 | 1 | 20 |
Dishwasher | LP | 12 | 1 | 1 | 24 |
Total installed flow (Lt/min) | 70 |
Sub-Meter Calculation Report | |
---|---|
System installed flow rate | 70.00 Lt/min |
Maximum probable flow rate | 32.49 Lt/min |
Sub-meter diameter | 25.00 mm |
Maximum daily consumption | 7.00 m3/day |
Sub-meter head loss | 0.78 mca |
Segment | Material | Type | Length (m) | Diameter (mm) | Speed (m/s) | Total Loss (mca) | Final Pressure (mca) | |
---|---|---|---|---|---|---|---|---|
MAP | RAP | Copper | Cu L | 3.30 | 25 | 1.02 | 0.76 | 13.24 |
RAP | A | Copper | Cu L | 2.56 | 25 | 1.02 | 0.21 | 13.03 |
A | B | Copper | Cu L | 28.39 | 25 | 1.02 | 1.76 | 11.27 |
B | C | Copper | Cu L | 2.20 | 19 | 1.52 | 0.60 | 10.68 |
C | D | Copper | Cu L | 0.99 | 19 | 1.34 | 0.29 | 10.39 |
D | BOLL | Copper | Cu L | 1.43 | 13 | 0.94 | 2.15 | 8.24 |
D | E | Copper | Cu L | 0.85 | 19 | 1.14 | 0.26 | 10.13 |
E | CAL | Copper | Cu L | 1.72 | 19 | 0.97 | 1.59 | 8.54 |
E | LO | Copper | Cu L | 1.46 | 13 | 0.81 | 1.02 | 9.11 |
C | WC | Copper | Cu L | 0.67 | 13 | 0.94 | 0.57 | 10.11 |
B | LP | Copper | Cu L | 5.51 | 13 | 1.07 | 1.67 | 9.61 |
Segment | Material | Type | Length (m) | Diameter (mm) | Speed (m/s) | Total Loss (mca) | Final Pressure (mca) | |
---|---|---|---|---|---|---|---|---|
CAL | F | Copper | Cu L | 1.19 | 19 | 0.97 | 2.04 | 6.49 |
F | G | Copper | Cu L | 0.28 | 19 | 0.97 | 0.15 | 6.35 |
G | LO | Copper | Cu L | 0.86 | 13 | 0.81 | 0.97 | 5.37 |
G | H | Copper | Cu L | 1.33 | 19 | 0.78 | 0.21 | 6.14 |
H | BOLL | Copper | Cu L | 1.18 | 13 | 0.94 | 2.12 | 4.02 |
H | LP | Copper | Cu L | 8.19 | 13 | 1.07 | 2.08 | 4.06 |
Plumbing Fixture | Acronym | Plumbing Fixture Flow Rate (Lt/min) | Cold Water Quantity | Hot Water Quantity | Total Flow Rate (Lt/min) |
---|---|---|---|---|---|
Toilet | WC | 10 | 1 | 0 | 10 |
Handwasher | LO | 8 | 1 | 1 | 16 |
Rain shower | BOLL | 10 | 1 | 1 | 20 |
Total installed flow (Lt/min) | 46 |
R.A.P. Calculation Report | |
---|---|
System installed flow rate | 46.00 Lt/min |
Maximum probable flow rate | 24.33 Lt/min |
Sub-meter diameter | 25.00 mm |
Maximum daily consumption | 7.00 m3/day |
Sub-meter head loss | 0.78 mca |
Segment | Material | Type | Length (m) | Diameter (mm) | Speed (m/s) | Total Loss (mca) | Final Pressure (mca) | |
---|---|---|---|---|---|---|---|---|
MAP | RAP | Copper | Cu L | 11.93 | 25 | 0.76 | 0.73 | 13.60 |
RAP | A | Copper | Cu L | 2.06 | 25 | 0.76 | 0.11 | 13.49 |
A | B | Copper | Cu L | 41.92 | 25 | 0.76 | 1.54 | 11.95 |
B | C | Copper | Cu L | 0.43 | 19 | 0.92 | 3.32 | 8.63 |
C | D | Copper | Cu L | 3.16 | 19 | 0.92 | 0.25 | 8.39 |
D | E | Copper | Cu L | 0.33 | 19 | 0.92 | 0.10 | 8.29 |
E | F | Copper | Cu L | 0.15 | 19 | 0.68 | 0.05 | 8.24 |
F | BOLL | Copper | Cu L | 1.23 | 13 | 0.94 | 2.13 | 6.11 |
F | LO | Copper | Cu L | 1.56 | 13 | 0.81 | 1.03 | 7.21 |
E | WC | Copper | Cu L | 1.29 | 13 | 0.94 | 0.67 | 7.61 |
B | CAL | Copper | Cu L | 1.46 | 19 | 0.68 | 1.50 | 10.46 |
Segment | Material | Type | Length (m) | Diameter (mm) | Speed (m/s) | Total Loss (mca) | Final Pressure (mca) | |
---|---|---|---|---|---|---|---|---|
CAL | G | Copper | Cu L | 3.16 | 19 | 0.68 | 3.94 | 6.51 |
G | H | Copper | Cu L | 0.76 | 19 | 0.68 | 0.09 | 6.42 |
H | BOLL | Copper | Cu L | 1.13 | 13 | 0.94 | 2.12 | 4.30 |
H | LO | Copper | Cu L | 1.43 | 13 | 0.81 | 1.02 | 5.40 |
Segment | Diameter Using Traditional Method (mm) | Diameter with Automation (mm) | Final Pressure with Traditional Method (mca) | Final Pressure with Automation (mca) | Error between Pressure Results (%) | |
---|---|---|---|---|---|---|
MAP | RAP | 25 | 25 | 13.72 | 13.24 | 3.50% |
RAP | A | 25 | 25 | 12.57 | 13.03 | 3.66% |
A | B | 25 | 25 | 11.19 | 11.27 | 0.71% |
B | C | 19 | 19 | 10.69 | 10.68 | 0.09% |
C | D | 19 | 19 | 10.52 | 10.39 | 1.24% |
D | BOLL | 13 | 13 | 8.05 | 8.24 | 2.36% |
D | E | 19 | 19 | 10.35 | 10.13 | 2.13% |
E | CAL | 19 | 19 | 8.98 | 8.54 | 4.90% |
E | LO | 13 | 13 | 9.05 | 9.11 | 0.66% |
C | WC | 13 | 13 | 9.80 | 10.11 | 3.16% |
B | LP | 13 | 13 | 8.97 | 9.61 | 7.12% |
Segment | Diameter Using Traditional Method (mm) | Diameter with Automation (mm) | Final Pressure with Traditional Method (mca) | Final Pressure with Automation (mca) | Error between Pressure Results (%) | |
---|---|---|---|---|---|---|
CAL | F | 19 | 19 | 7.17 | 6.49 | 9.48% |
F | G | 19 | 19 | 6.16 | 6.35 | 3.08% |
G | LO | 19 | 13 | 5.85 | 5.37 | 8.21% |
G | H | 19 | 19 | 7.06 | 6.14 | 13.03% |
H | BOLL | 13 | 13 | 4.58 | 4.02 | 12.23% |
H | LP | 13 | 13 | 4.27 | 4.06 | 4.92% |
Segment | Diameter Using Traditional Method (mm) | Diameter with Automation (mm) | Final Pressure with Traditional Method (mca) | Final Pressure with Automation (mca) | Error between Pressure Results (%) | |
---|---|---|---|---|---|---|
MAP | RAP | 25 | 25 | 13.68 | 13.60 | 0.58% |
RAP | A | 25 | 25 | 13.12 | 13.49 | 2.82% |
A | B | 25 | 25 | 11.86 | 11.95 | 0.76% |
B | C | 19 | 19 | 10.41 | 8.63 | 17.10% |
C | D | 19 | 19 | 8.69 | 8.39 | 3.45% |
D | E | 19 | 19 | 8.37 | 8.29 | 0.96% |
E | F | 19 | 19 | 8.32 | 8.24 | 0.96% |
F | BOLL | 13 | 13 | 5.09 | 6.11 | 20.04% |
F | LO | 13 | 13 | 7.00 | 7.21 | 3.00% |
E | WC | 13 | 13 | 7.29 | 7.61 | 4.39% |
B | CAL | 19 | 19 | 10.60 | 10.46 | 1.32% |
Segment | Diameter Using Traditional Method (mm) | Diameter with Automation (mm) | Final Pressure with Traditional Method (mca) | Final Pressure with Automation (mca) | Error between Pressure Results (%) | |
---|---|---|---|---|---|---|
CAL | G | 25 | 19 | 8.44 | 6.51 | 22.87% |
G | H | 19 | 19 | 6.34 | 6.42 | 1.26% |
H | BOLL | 19 | 13 | 4.40 | 4.30 | 2.27% |
H | LO | 13 | 13 | 5.02 | 5.40 | 7.57% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atencio, E.; Araya, P.; Oyarce, F.; Herrera, R.F.; Muñoz-La Rivera, F.; Lozano-Galant, F. Towards the Integration and Automation of the Design Process for Domestic Drinking-Water and Sewerage Systems with BIM. Appl. Sci. 2022, 12, 9063. https://doi.org/10.3390/app12189063
Atencio E, Araya P, Oyarce F, Herrera RF, Muñoz-La Rivera F, Lozano-Galant F. Towards the Integration and Automation of the Design Process for Domestic Drinking-Water and Sewerage Systems with BIM. Applied Sciences. 2022; 12(18):9063. https://doi.org/10.3390/app12189063
Chicago/Turabian StyleAtencio, Edison, Pablo Araya, Francisco Oyarce, Rodrigo F. Herrera, Felipe Muñoz-La Rivera, and Fidel Lozano-Galant. 2022. "Towards the Integration and Automation of the Design Process for Domestic Drinking-Water and Sewerage Systems with BIM" Applied Sciences 12, no. 18: 9063. https://doi.org/10.3390/app12189063
APA StyleAtencio, E., Araya, P., Oyarce, F., Herrera, R. F., Muñoz-La Rivera, F., & Lozano-Galant, F. (2022). Towards the Integration and Automation of the Design Process for Domestic Drinking-Water and Sewerage Systems with BIM. Applied Sciences, 12(18), 9063. https://doi.org/10.3390/app12189063