Federated Learning for Edge Computing: A Survey
Abstract
:1. Introduction
2. Literature Review
3. Federated Learning
3.1. Definition
3.2. Communication
3.3. Architectures
3.4. Scale of Federation
3.5. Privacy and Security
3.6. Categorization
3.7. Summary
4. Frameworks
4.1. FATE
4.2. Flower
4.3. OpenMined-PySyft
4.4. OpenFL
4.5. TensorFlow Federated
4.6. Other
4.7. Summary
5. Applications
5.1. Mobile Devices
5.2. IoT Systems
5.3. Industry
5.4. Healthcare
5.5. Finance
5.6. Transport
5.7. Summary
6. Challenges
6.1. Edge Computing
6.2. Hardware Requirements
- Single board computers (SBC): The SBC is an entire computer with a microprocessor, memory, input/output pins, and other features needed for a working computer that is built on a single circuit board. The ARM architecture is used by many manufacturers. The ARM architecture is also present in today’s smartphones, tablets, and laptops. Compared to desktop or laptop computers, SBCs are quick to produce and reach the market. Compared to multi-board computers, they are lighter, smaller, more reliable, and more effective [138];
- Mini-PC: Compact computer or mini-PC systems are ideal for running and training simpler AI and ML algorithms, real-time analysis of high data flows, and simpler image processing from numerous sensors. The advantages include the processing speed, compact design, and cheaper price. Despite having a relatively high processing power, these computers frequently experience cooling issues because all of their components are contained in a small box with a subpar cooling system. In some circumstances, it is possible to swap out some parameters for newer, more powerful ones, such as the CPU, RAM, or hard drive. However, the majority of these computers only have slower graphics cards or graphics cards integrated with CPU [139];
- Field Programmable Gate Array (FPGA): A type of reconfigurable integrated circuit known as a FPGA is composed of programmable logic blocks, each containing gates that can communicate with one another. This device’s advantage is that it can be reprogrammed to alter how each block’s logic operates and the connections between them. FPGAs are now frequently used for edge nodes. Although they are not as powerful as GPUs used for complex computations, they are more efficient and use less power. These devices create new possibilities for utilizing these accelerators at the network’s edge [140].
6.3. Communication Overhead
6.4. Limited Resources
6.5. Heterogeneous Hardware
6.6. Heterogeneous Data
6.7. Scheduling Techniques
6.8. Privacy Issue
6.9. Scalability
6.10. Summary
7. Future Work
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FL | Federated Learning |
IoT | Internet of Things |
IIoT | Industrial IoT |
IoV | Internet of Vehicle |
AI | Artificial Intelligence |
ML | Machine Learning |
FedAvg | Federated Averaging |
DT | Decision Tree |
RF | Random Forest |
SVM | Support Vector Machine |
KNN | K-nearest Neighbour |
P2P | Peer-to-Peer |
GDPR | General Data Protection Regulation |
CCPA | California Consumer Privacy Act |
PDPA | Personal Data Protection |
FATE | Federated AI Technology Enabler |
MPC | Multi-party Computation |
OpenFL | Open Federated Learning |
CA | Certificate Authority |
TFF | TensorFlow Federated |
FC | Federated Core |
SDK | Software Development Kit |
MEC | Mobile Edge Computing |
DEP | Delay Energy Product |
SBC | Single Board Computer |
FPGA | Field Programmable Gate Array |
References
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and Taxonomy. IoT 2021, 2, 92–118. [Google Scholar] [CrossRef]
- Duc, T.L.; Leiva, R.G.; Casari, P.; Östberg, P.O. Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud Computing: A Survey. ACM Comput. Surv. 2019, 52, 1–39. [Google Scholar] [CrossRef]
- Das, S.; Dey, A.; Pal, A.; Roy, N. Applications of artificial intelligence in machine learning: Review and prospect. Int. J. Comput. Appl. 2015, 115, 31–41. [Google Scholar] [CrossRef]
- Khanzode, K.C.A.; Sarode, R.D. Advantages and Disadvantages of Artificial Intelligence and Machine Learning: A Literature Review. Int. J. Libr. Inf. Sci. (IJLIS) 2020, 9, 3. [Google Scholar]
- McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv 2016. [Google Scholar] [CrossRef]
- Li, Q.; Wen, Z.; Wu, Z.; Hu, S.; Wang, N.; Li, Y.; Liu, X.; He, B. A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Trans. Knowl. Data Eng. 2021. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Access 2020, 8, 140699–140725. [Google Scholar] [CrossRef]
- Al-Ansi, A.; Al-Ansi, A.M.; Muthanna, A.; Elgendy, I.A.; Koucheryavy, A. Survey on Intelligence Edge Computing in 6G: Characteristics, Challenges, Potential Use Cases, and Market Drivers. Future Internet 2021, 13, 118. [Google Scholar] [CrossRef]
- Cui, L.; Yang, S.; Chen, F.; Ming, Z.; Lu, N.; Qin, J. A survey on application of machine learning for Internet of Things. Int. J. Mach. Learn. Cybern. 2018, 9, 1399–1417. [Google Scholar] [CrossRef]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A survey on computation offloading modeling for edge computing. J. Netw. Comput. Appl. 2020, 169, 102781. [Google Scholar] [CrossRef]
- Ramu, S.P.; Boopalan, P.; Pham, Q.V.; Maddikunta, P.K.R.; Huynh-The, T.; Alazab, M.; Nguyen, T.T.; Gadekallu, T.R. Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions. Sustain. Cities Soc. 2022, 79, 103663. [Google Scholar] [CrossRef]
- Zhang, K.; Song, X.; Zhang, C.; Yu, S. Challenges and future directions of secure federated learning: A survey. Front. Comput. Sci. 2021, 16, 165817. [Google Scholar] [CrossRef] [PubMed]
- Ouadrhiri, A.E.; Abdelhadi, A. Differential Privacy for Deep and Federated Learning: A Survey. IEEE Access 2022, 10, 22359–22380. [Google Scholar] [CrossRef]
- Tu, X.; Zhu, K.; Luong, N.C.; Niyato, D.; Zhang, Y.; Li, J. Incentive Mechanisms for Federated Learning: From Economic and Game Theoretic Perspective. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1566–1593. [Google Scholar] [CrossRef]
- Alam, T.; Gupta, R. Federated Learning and Its Role in the Privacy Preservation of IoT Devices. Future Internet 2022, 14, 246. [Google Scholar] [CrossRef]
- Javed, A.R.; Hassan, M.A.; Shahzad, F.; Ahmed, W.; Singh, S.; Baker, T.; Gadekallu, T.R. Integration of Blockchain Technology and Federated Learning in Vehicular (IoT) Networks: A Comprehensive Survey. Sensors 2022, 22, 4394. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, X.; Ren, J.; Qin, T. Blockchain-Enabled Federated Learning for UAV Edge Computing Network: Issues and Solutions. IEEE Access 2022, 10, 56591–56610. [Google Scholar] [CrossRef]
- Lang, P.; Tian, D.; Duan, X.; Zhou, J.; Sheng, Z.; Leung, V.C. Cooperative Computation Offloading in Blockchain-Based Vehicular Edge Computing Networks. IEEE Trans. Intell. Veh. 2022, 1–16. [Google Scholar] [CrossRef]
- Xue, H.; Chen, D.; Zhang, N.; Dai, H.N.; Yu, K. Integration of Blockchain and Edge Computing in Internet of Things: A Survey. arXiv 2022. [Google Scholar] [CrossRef]
- Wahab, O.A.; Mourad, A.; Otrok, H.; Taleb, T. Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Communication and Networking Systems. IEEE Commun. Surv. Tutor. 2021, 23, 1342–1397. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications. IEEE Access 2017, 5, 6757–6779. [Google Scholar] [CrossRef]
- Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of federated learning. Future Gener. Comput. Syst. 2021, 115, 619–640. [Google Scholar] [CrossRef]
- Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated Learning for Healthcare Informatics. J. Healthc. Inform. Res. 2021, 5, 1–19. [Google Scholar] [CrossRef]
- Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Vincent Poor, H. Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Du, Z.; Wu, C.; Yoshinaga, T.; Yau, K.L.A.; Ji, Y.; Li, J. Federated Learning for Vehicular Internet of Things: Recent Advances and Open Issues. IEEE Open J. Comput. Soc. 2020, 1, 45–61. [Google Scholar] [CrossRef]
- Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2031–2063. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, Y.; Sun, Y.; Wang, Z.; Liu, B.; Li, K. Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges. Connect. Sci. 2022, 34, 1–28. [Google Scholar] [CrossRef]
- Li, D.; Han, D.; Weng, T.H.; Zheng, Z.; Li, H.; Liu, H.; Castiglione, A.; Li, K.C. Blockchain for federated learning toward secure distributed machine learning systems: A systemic survey. Soft Comput. 2022, 26, 4423–4440. [Google Scholar] [CrossRef] [PubMed]
- Witt, L.; Heyer, M.; Toyoda, K.; Samek, W.; Li, D. Decentral and Incentivized Federated Learning Frameworks: A Systematic Literature Review. arXiv 2022. [Google Scholar] [CrossRef]
- Victor, N.; C, R.; Alazab, M.; Bhattacharya, S.; Magnusson, S.; Maddikunta, P.K.R.; Ramana, K.; Gadekallu, T.R. Federated Learning for IoUT: Concepts, Applications, Challenges and Opportunities. arXiv 2022. [Google Scholar] [CrossRef]
- Dhiman, G.; Juneja, S.; Mohafez, H.; El-Bayoumy, I.; Sharma, L.K.; Hadizadeh, M.; Islam, M.A.; Viriyasitavat, W.; Khandaker, M.U. Federated Learning Approach to Protect Healthcare Data over Big Data Scenario. Sustainability 2022, 14, 2500. [Google Scholar] [CrossRef]
- Kong, L.; Tan, J.; Huang, J.; Chen, G.; Wang, S.; Jin, X.; Zeng, P.; Khan, M.K.; Das, S.K. Edge-Computing-Driven Internet of Things: A Survey. ACM Comput. Surv. 2022. [Google Scholar] [CrossRef]
- Enthoven, D.; Al-Ars, Z. An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies. In Federated Learning Systems: Towards Next-Generation AI; ur Rehman, M.H., Gaber, M.M., Eds.; Springer International Publishing: Cham, Switerland, 2021; pp. 173–196. [Google Scholar] [CrossRef]
- Cruz, P.; Achir, N.; Viana, A.C. On the Edge of the Deployment: A Survey on Multi-Access Edge Computing. ACM Comput. Surv. 2022. Just Accepted. [Google Scholar] [CrossRef]
- Yang, T.; Andrew, G.; Eichner, H.; Sun, H.; Li, W.; Kong, N.; Ramage, D.; Beaufays, F. Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv 2018. [Google Scholar] [CrossRef]
- Kholod, I.; Yanaki, E.; Fomichev, D.; Shalugin, E.; Novikova, E.; Filippov, E.; Nordlund, M. Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis. Sensors 2020, 21, 167. [Google Scholar] [CrossRef]
- Xu, L.D.; Lu, Y.; Li, L. Embedding Blockchain Technology Into IoT for Security: A Survey. IEEE Internet Things J. 2021, 8, 10452–10473. [Google Scholar] [CrossRef]
- Golosova, J.; Romanovs, A. The Advantages and Disadvantages of the Blockchain Technology. In Proceedings of the 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 8–10 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, X.; Liu, J.; Zhang, Y.; Huang, K.; Liang, Y. Blockchain-Enabled Federated Learning Data Protection Aggregation Scheme With Differential Privacy and Homomorphic Encryption in IIoT. IEEE Trans. Ind. Inform. 2022, 18, 4049–4058. [Google Scholar] [CrossRef]
- Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A Performance Evaluation of Federated Learning Algorithms. In Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, DIDL ’18, Rennes, France, 10–11 December 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Khan, L.U.; Saad, W.; Han, Z.; Hossain, E.; Hong, C.S. Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 1759–1799. [Google Scholar] [CrossRef]
- Chen, X.; Ji, J.; Luo, C.; Liao, W.; Li, P. When Machine Learning Meets Blockchain: A Decentralized, Privacy-preserving and Secure Design. In Proceedings of the 2018 IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; pp. 1178–1187. [Google Scholar] [CrossRef]
- Rahman, S.A.; Tout, H.; Talhi, C.; Mourad, A. Internet of Things Intrusion Detection: Centralized, On-Device, or Federated Learning? IEEE Netw. 2020, 34, 310–317. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning. IEEE Access 2022, 10, 40281–40306. [Google Scholar] [CrossRef]
- Lalitha, A.; Kilinc, O.C.; Javidi, T.; Koushanfar, F. Peer-to-peer Federated Learning on Graphs. arXiv 2019, arXiv:1901.11173. [Google Scholar]
- Wang, H.; Muñoz González, L.; Eklund, D.; Raza, S. Non-IID Data Re-Balancing at IoT Edge with Peer-to-Peer Federated Learning for Anomaly Detection. In Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec’21, Abu Dhabi, United Arab Emirates, 28 June–2 July 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 153–163. [Google Scholar] [CrossRef]
- Wink, T.; Nochta, Z. An Approach for Peer-to-Peer Federated Learning. In Proceedings of the 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Taipei, Taiwan, 21–24 June 2021; pp. 150–157. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, J.; Wang, Z. Decentralized Federated Learning: A Segmented Gossip Approach. arXiv 2019, arXiv:1908.07782. [Google Scholar]
- Lu, S.; Zhang, Y.; Wang, Y. Decentralized Federated Learning for Electronic Health Records. In Proceedings of the 2020 54th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 18–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ghimire, B.; Rawat, D.B. Recent Advances on Federated Learning for Cybersecurity and Cybersecurity for Federated Learning for Internet of Things. IEEE Internet Things J. 2022, 9, 8229–8249. [Google Scholar] [CrossRef]
- Ali, M.; Karimipour, H.; Tariq, M. Integration of blockchain and federated learning for Internet of Things: Recent advances and future challenges. Comput. Secur. 2021, 108, 102355. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus. IEEE Netw. 2021, 35, 234–241. [Google Scholar] [CrossRef]
- Karimireddy, S.P.; Jaggi, M.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.U.; Suresh, A.T. Breaking the centralized barrier for cross-device federated learning. Neural Inf. Process. Syst. 2021, 34, 28663–28676. [Google Scholar]
- Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; Liu, Y. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), Online, 5–17 July 2020; pp. 493–506. [Google Scholar]
- Durrant, A.; Markovic, M.; Matthews, D.; May, D.; Enright, J.; Leontidis, G. The role of cross-silo federated learning in facilitating data sharing in the agri-food sector. Comput. Electron. Agric. 2022, 193, 106648. [Google Scholar] [CrossRef]
- Rehman, M.H.u.; Dirir, A.M.; Salah, K.; Damiani, E.; Svetinovic, D. TrustFed: A Framework for Fair and Trustworthy Cross-Device Federated Learning in IIoT. IEEE Trans. Ind. Inform. 2021, 17, 8485–8494. [Google Scholar] [CrossRef]
- Yang, W.; Wang, N.; Guan, Z.; Wu, L.; Du, X.; Guizani, M. A Practical Cross-Device Federated Learning Framework over 5G Networks. IEEE Wirel. Commun. 2022, 1–8. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Demotes-Mainard, J.; Cornu, C.; Guérin, A.; Bertoye, P.H.; Boidin, R.; Bureau, S.; Chrétien, J.M.; Delval, C.; Deplanque, D.; Dubray, C.; et al. How the new European data protection regulation affects clinical research and recommendations? Therapies 2019, 74, 31–42, XXXIVès Rencontres Nationales de Pharmacologie et Recherche Clinique, pour l’Innovation Thérapeutique et l’Évaluation des Technologies de Santé. [Google Scholar] [CrossRef]
- Barrett, C. Are the eu gdpr and the california ccpa becoming the de facto global standards for data privacy and protection? Scitech Lawyer 2019, 15, 24–29. [Google Scholar]
- Chik, W.B. The Singapore Personal Data Protection Act and an assessment of future trends in data privacy reform. Comput. Law Secur. Rev. 2013, 29, 554–575. [Google Scholar] [CrossRef]
- Hao, M.; Li, H.; Luo, X.; Xu, G.; Yang, H.; Liu, S. Efficient and Privacy-Enhanced Federated Learning for Industrial Artificial Intelligence. IEEE Trans. Ind. Inform. 2020, 16, 6532–6542. [Google Scholar] [CrossRef]
- Geiping, J.; Bauermeister, H.; Dröge, H.; Moeller, M. Inverting Gradients—How easy is it to break privacy in federated learning? Neural Inf. Process. Syst. 2020, 33, 16937–16947. [Google Scholar]
- Abad, G.; Picek, S.; Urbieta, A. SoK: On the Security & Privacy in Federated Learning. arXiv 2021, arXiv:2112.05423. [Google Scholar]
- Wei, W.; Liu, L.; Loper, M.; Chow, K.H.; Gursoy, M.E.; Truex, S.; Wu, Y. A Framework for Evaluating Gradient Leakage Attacks in Federated Learning. arXiv 2020. [Google Scholar] [CrossRef]
- Fang, H.; Qian, Q. Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning. Future Internet 2021, 13, 94. [Google Scholar] [CrossRef]
- Islam, A.; Al Amin, A.; Shin, S.Y. FBI: A Federated Learning-Based Blockchain-Embedded Data Accumulation Scheme Using Drones for Internet of Things. IEEE Wirel. Commun. Lett. 2022, 11, 972–976. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl.-Based Syst. 2021, 216, 106775. [Google Scholar] [CrossRef]
- Jiang, J.; Kantarci, B.; Oktug, S.; Soyata, T. Federated Learning in Smart City Sensing: Challenges and Opportunities. Sensors 2020, 20, 6230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, Y.; Pan, R. Incentive Mechanism for Horizontal Federated Learning Based on Reputation and Reverse Auction. In Proceedings of the Web Conference 2021, WWW’21, Ljubljana, Slovenia, 19–23 April 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 947–956. [Google Scholar] [CrossRef]
- Weng, H.; Zhang, J.; Xue, F.; Wei, T.; Ji, S.; Zong, Z. Privacy Leakage of Real-World Vertical Federated Learning. arXiv 2020. [Google Scholar] [CrossRef]
- Romanini, D.; Hall, A.J.; Papadopoulos, P.; Titcombe, T.; Ismail, A.; Cebere, T.; Sandmann, R.; Roehm, R.; Hoeh, M.A. PyVertical: A Vertical Federated Learning Framework for Multi-headed SplitNN. arXiv 2021. [Google Scholar] [CrossRef]
- An Industrial Grade Federated Learning Framework. Available online: https://fate.fedai.org/ (accessed on 18 July 2022).
- Yang, K.; Fan, T.; Chen, T.; Shi, Y.; Yang, Q. A Quasi-Newton Method Based Vertical Federated Learning Framework for Logistic Regression. arXiv 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, T.; Chen, T.; Xu, Q.; Yang, Q. FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection. J. Mach. Learn. Res. 2021, 22, 1–6. [Google Scholar]
- Flower A Friendly Federated Learning Framework. Available online: https://flower.dev (accessed on 18 July 2022).
- Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; Lane, N.D. Flower: A Friendly Federated Learning Research Framework. arXiv 2020, arXiv:2007.14390. [Google Scholar]
- Mathur, A.; Beutel, D.J.; de Gusmão, P.P.B.; Fernandez-Marques, J.; Topal, T.; Qiu, X.; Parcollet, T.; Gao, Y.; Lane, N.D. On-device Federated Learning with Flower. arXiv 2021. [Google Scholar] [CrossRef]
- Li, K.H.; de Gusmão, P.P.B.; Beutel, D.J.; Lane, N.D. Secure Aggregation for Federated Learning in Flower. In Proceedings of the 2nd ACM International Workshop on Distributed Machine Learning, Virtual Event, 7 December 2021; Germany Association for Computing Machinery: New York, NY, USA, 2021; pp. 8–14. [Google Scholar]
- A World Where Every Good Question Is Answered. Available online: https://www.openmined.org (accessed on 18 July 2022).
- Ziller, A.; Trask, A.; Lopardo, A.; Szymkow, B.; Wagner, B.; Bluemke, E.; Nounahon, J.M.; Passerat-Palmbach, J.; Prakash, K.; Rose, N.; et al. Pysyft: A library for easy federated learning. In Federated Learning Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 111–139. [Google Scholar]
- Das, A.; Brunschwiler, T. Privacy is What We Care About: Experimental Investigation of Federated Learning on Edge Devices. In First International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, AIChallengeIoT’19; Association for Computing Machinery: New York, NY, USA, 2019; pp. 39–42. [Google Scholar] [CrossRef]
- Kang, J.; Xiong, Z.; Jiang, C.; Liu, Y.; Guo, S.; Zhang, Y.; Niyato, D.; Leung, C.; Miao, C. Scalable and communication-efficient decentralized federated edge learning with multi-blockchain framework. In Proceedings of the International Conference on Blockchain and Trustworthy Systems, Dali, China, 6–7 August 2020; pp. 152–165. [Google Scholar]
- Welcome to the Open Federated Learning (OpenFL) Documentation. Available online: https://openfl.readthedocs.io/en/latest/index.html (accessed on 19 July 2022).
- Reina, G.A.; Gruzdev, A.; Foley, P.; Perepelkina, O.; Sharma, M.; Davidyuk, I.; Trushkin, I.; Radionov, M.; Mokrov, A.; Agapov, D.; et al. OpenFL: An open-source framework for Federated Learning. arXiv 2021. [Google Scholar] [CrossRef]
- Quoc, D.L.; Fetzer, C. SecFL: Confidential Federated Learning using TEEs. arXiv 2021. [Google Scholar] [CrossRef]
- TensorFlow Federated: Machine Learning on Decentralized Data. Available online: https://www.tensorflow.org/federated (accessed on 19 July 2022).
- Zhu, X.; Wang, J.; Hong, Z.; Xia, T.; Xiao, J. Federated Learning of Unsegmented Chinese Text Recognition Model. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 1341–1345. [Google Scholar] [CrossRef]
- Train on the Edge with Federated Learning. Available online: https://www.xaynet.dev (accessed on 19 July 2022).
- Ping An: Security Technology Reduces Data Silos. Available online: https://www.intel.sg/content/www/xa/en/customer-spotlight/stories/ping-an-sgx-customer-story.html (accessed on 19 July 2022).
- Substra Overview. Available online: https://doc.substra.ai/overview.html (accessed on 20 July 2022).
- NVIDIA Clara Documentation. Available online: https://developer.nvidia.com/clara (accessed on 20 July 2022).
- Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-preserving federated brain tumour segmentation. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Shenzhen, China, 13 October 2019; pp. 133–141. [Google Scholar]
- Roth, H.R.; Chang, K.; Singh, P.; Neumark, N.; Li, W.; Gupta, V.; Gupta, S.; Qu, L.; Ihsani, A.; Bizzo, B.C.; et al. Federated learning for breast density classification: A real-world implementation. In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Springer: Lima, Peru, 2020; pp. 181–191. [Google Scholar]
- Zellinger, W.; Wieser, V.; Kumar, M.; Brunner, D.; Shepeleva, N.; Gálvez, R.; Langer, J.; Fischer, L.; Moser, B. Beyond federated learning: On confidentiality-critical machine learning applications in industry. Procedia Comput. Sci. 2021, 180, 734–743. [Google Scholar] [CrossRef]
- IBM Federated Learning. Available online: https://www.ibm.com/docs/en/cloud-paks/cp-data/4.5.x?topic=models-federated-learning (accessed on 4 August 2022).
- Ludwig, H.; Baracaldo, N.; Thomas, G.; Zhou, Y.; Anwar, A.; Rajamoni, S.; Ong, Y.; Radhakrishnan, J.; Verma, A.; Sinn, M.; et al. IBM Federated Learning: An Enterprise Framework White Paper V0.1. arXiv 2020. [Google Scholar] [CrossRef]
- Abay, A.; Zhou, Y.; Baracaldo, N.; Rajamoni, S.; Chuba, E.; Ludwig, H. Mitigating Bias in Federated Learning. arXiv 2020. [Google Scholar] [CrossRef]
- van Esch, D.; Sarbar, E.; Lucassen, T.; O’Brien, J.; Breiner, T.; Prasad, M.; Crew, E.; Nguyen, C.; Beaufays, F. Writing Across the World’s Languages: Deep Internationalization for Gboard, the Google Keyboard. arXiv 2019. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Mathews, R.; Rao, K.; Beaufays, F. Federated Learning for Emoji Prediction in a Mobile Keyboard. arXiv 2019. [Google Scholar] [CrossRef]
- Granqvist, F.; Seigel, M.; van Dalen, R.; Cahill, A.; Shum, S.; Paulik, M. Improving on-device speaker verification using federated learning with privacy. arXiv 2020. [Google Scholar] [CrossRef]
- Latorre, J.; Bailleul, C.; Morrill, T.; Conkie, A.; Stylianou, Y. Combining speakers of multiple languages to improve quality of neural voices. arXiv 2021, arXiv:2108.07737. [Google Scholar]
- Feng, J.; Rong, C.; Sun, F.; Guo, D.; Li, Y. PMF: A Privacy-Preserving Human Mobility Prediction Framework via Federated Learning. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–21. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and Communication by Federated Learning. IEEE Netw. 2019, 33, 156–165. [Google Scholar] [CrossRef]
- Qian, Y.; Hu, L.; Chen, J.; Guan, X.; Hassan, M.M.; Alelaiwi, A. Privacy-aware service placement for mobile edge computing via federated learning. Inf. Sci. 2019, 505, 562–570. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A.R. DÏoT: A Federated Self-learning Anomaly Detection System for IoT. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 756–767. [Google Scholar] [CrossRef]
- Yu, T.; Li, T.; Sun, Y.; Nanda, S.; Smith, V.; Sekar, V.; Seshan, S. Learning Context-Aware Policies from Multiple Smart Homes via Federated Multi-Task Learning. In Proceedings of the 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI), Sydney, Australia, 21–24 April 2020; pp. 104–115. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, A.; Luo, Y.; Huang, H.; Liu, Y.; Chen, Y.; Feng, L.; Chen, T.; Yu, H.; Yang, Q. Fedvision: An online visual object detection platform powered by federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13172–13179. [Google Scholar]
- Han, X.; Yu, H.; Gu, H. Visual Inspection with Federated Learning. In Proceedings of the Image Analysis and Recognition, Waterloo, ON, Canada, 27–29 August 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 52–64. [Google Scholar]
- Hu, B.; Gao, Y.; Liu, L.; Ma, H. Federated Region-Learning: An Edge Computing Based Framework for Urban Environment Sensing. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Hua, G.; Zhu, L.; Wu, J.; Shen, C.; Zhou, L.; Lin, Q. Blockchain-Based Federated Learning for Intelligent Control in Heavy Haul Railway. IEEE Access 2020, 8, 176830–176839. [Google Scholar] [CrossRef]
- Deng, T.; Li, Y.; Liu, X.; Wang, L. Federated learning-based collaborative manufacturing for complex parts. J. Intell. Manuf. 2022. [Google Scholar] [CrossRef]
- Pfohl, S.R.; Dai, A.M.; Heller, K. Federated and Differentially Private Learning for Electronic Health Records. arXiv 2019. [Google Scholar] [CrossRef]
- Kumar, Y.; Singla, R. Federated Learning Systems for Healthcare: Perspective and Recent Progress. In Federated Learning Systems: Towards Next-Generation AI; Springer International Publishing: Cham, Switzerland, 2021; pp. 141–156. [Google Scholar] [CrossRef]
- Huang, L.; Shea, A.L.; Qian, H.; Masurkar, A.; Deng, H.; Liu, D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 2019, 99, 103291. [Google Scholar] [CrossRef]
- Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated Electronic Health Records. Int. J. Med Inform. 2018, 112, 59–67. [Google Scholar] [CrossRef]
- Schneble, W.; Thamilarasu, G. Attack detection using federated learning in medical cyber-physical systems. In Proceedings of the 28th International Conference on Computer Communications and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–8. [Google Scholar]
- Long, G.; Tan, Y.; Jiang, J.; Zhang, C. Federated Learning for Open Banking. In Federated Learning: Privacy and Incentive; Springer International Publishing: Cham, Switzerland, 2020; pp. 240–254. [Google Scholar] [CrossRef]
- Shingi, G. A federated learning based approach for loan defaults prediction. In Proceedings of the 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, 17–20 November 2020; pp. 362–368. [Google Scholar] [CrossRef]
- Kawa, D.; Punyani, S.; Nayak, P.; Karkera, A.; Jyotinagar, V. Credit risk assessment from combined bank records using federated learning. Int. Res. J. Eng. Technol. (IRJET) 2019, 6, 1355–1358. [Google Scholar]
- Alazab, M.; RM, S.P.; M, P.; Maddikunta, P.K.R.; Gadekallu, T.R.; Pham, Q.V. Federated Learning for Cybersecurity: Concepts, Challenges, and Future Directions. IEEE Trans. Ind. Inform. 2022, 18, 3501–3509. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Y.; Chen, T.; Yang, Q. Federated Learning for Privacy-Preserving AI. Commun. ACM 2020, 63, 33–36. [Google Scholar] [CrossRef]
- Chen, J.H.; Chen, M.R.; Zeng, G.Q.; Weng, J.S. BDFL: A Byzantine-Fault-Tolerance Decentralized Federated Learning Method for Autonomous Vehicle. IEEE Trans. Veh. Technol. 2021, 70, 8639–8652. [Google Scholar] [CrossRef]
- Zeng, T.; Semiariy, O.; Chen, M.; Saad, W.; Bennis, M. Federated Learning on the Road Autonomous Controller Design for Connected and Autonomous Vehicles. IEEE Trans. Wirel. Commun. 2022. [Google Scholar] [CrossRef]
- Elbir, A.M.; Soner, B.; Coleri, S.; Gunduz, D.; Bennis, M. Federated Learning in Vehicular Networks. arXiv 2020. [Google Scholar] [CrossRef]
- Xia, Q.; Ye, W.; Tao, Z.; Wu, J.; Li, Q. A survey of federated learning for edge computing: Research problems and solutions. High-Confid. Comput. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Mothukuri, V.; Khare, P.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava, G. Federated-Learning-Based Anomaly Detection for IoT Security Attacks. IEEE Internet Things J. 2022, 9, 2545–2554. [Google Scholar] [CrossRef]
- Ren, J.; Wang, H.; Hou, T.; Zheng, S.; Tang, C. Federated Learning-Based Computation Offloading Optimization in Edge Computing-Supported Internet of Things. IEEE Access 2019, 7, 69194–69201. [Google Scholar] [CrossRef]
- Maray, M.; Shuja, J. Computation Offloading in Mobile Cloud Computing and Mobile Edge Computing: Survey, Taxonomy, and Open Issues. Mob. Inf. Syst. 2022, 2022, 1121822. [Google Scholar] [CrossRef]
- Arthurs, P.; Gillam, L.; Krause, P.; Wang, N.; Halder, K.; Mouzakitis, A. A Taxonomy and Survey of Edge Cloud Computing for Intelligent Transportation Systems and Connected Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6206–6221. [Google Scholar] [CrossRef]
- Dhar, S.; Guo, J.; Liu, J.J.; Tripathi, S.; Kurup, U.; Shah, M. A Survey of On-Device Machine Learning: An Algorithms and Learning Theory Perspective. ACM Trans. Internet Things 2021, 2, 1–49. [Google Scholar] [CrossRef]
- Pomšár, L.; Brecko, A.; Zolotová, I. Brief overview of Edge AI accelerators for energy-constrained edge. In Proceedings of the 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI), Poprad, Slovakia, 2–5 March 2022; pp. 461–466. [Google Scholar] [CrossRef]
- Chang, Z.; Liu, S.; Xiong, X.; Cai, Z.; Tu, G. A Survey of Recent Advances in Edge-Computing-Powered Artificial Intelligence of Things. IEEE Internet Things J. 2021, 8, 13849–13875. [Google Scholar] [CrossRef]
- Basford, P.J.; Johnston, S.J.; Perkins, C.S.; Garnock-Jones, T.; Tso, F.P.; Pezaros, D.; Mullins, R.D.; Yoneki, E.; Singer, J.; Cox, S.J. Performance analysis of single board computer clusters. Future Gener. Comput. Syst. 2020, 102, 278–291. [Google Scholar] [CrossRef]
- Dukan, P.; Kovari, A.; Katona, J. Low consumption and high performance intel, AMD and ARM based Mini PCs. In Proceedings of the 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 19–21 November 2014; pp. 127–131. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Liu, Z. A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and ASIC. In Proceedings of the 2022 14th International Conference on Computer Research and Development (ICCRD), Shenzhen, China, 7–9 January 2022; pp. 100–107. [Google Scholar] [CrossRef]
- Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving Communication Efficiency. arXiv 2016. [Google Scholar] [CrossRef]
- WANG, L.; WANG, W.; LI, B. CMFL: Mitigating Communication Overhead for Federated Learning. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 954–964. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Lyu, L.; Huang, Y.; Xie, X. Communication-efficient federated learning via knowledge distillation. Nat. Commun. 2022, 13, 2032. [Google Scholar] [CrossRef] [PubMed]
- Shome, D.; Waqar, O.; Khan, W.U. Federated learning and next generation wireless communications: A survey on bidirectional relationship. Trans. Emerg. Telecommun. Technol. 2022, 33, e4458. [Google Scholar] [CrossRef]
- Liu, J.; Ahmed, M.; Mirza, M.A.; Khan, W.U.; Xu, D.; Li, J.; Aziz, A.; Han, Z. RL/DRL Meets Vehicular Task Offloading Using Edge and Vehicular Cloudlet: A Survey. IEEE Internet Things J. 2022, 9, 8315–8338. [Google Scholar] [CrossRef]
- Nishio, T.; Yonetani, R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Eichner, H.; Kiddon, C.; Ramage, D. Federated Learning for Mobile Keyboard Prediction. arXiv 2018. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, S.; Valls, V.; Ko, B.J.; Lee, W.H.; Leung, K.K.; Tassiulas, L. Model Pruning Enables Efficient Federated Learning on Edge Devices. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–13. [Google Scholar] [CrossRef]
- Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.J.; Stich, S.U.; Suresh, A.T. SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning. CoRR 2019. abs/1910.06378. [Google Scholar]
- Huang, W.; Ye, M.; Du, B. Learn From Others and Be Yourself in Heterogeneous Federated Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–20 June 2022; pp. 10143–10153. [Google Scholar]
- Feng, J.; Zhang, W.; Pei, Q.; Wu, J.; Lin, X. Heterogeneous Computation and Resource Allocation for Wireless Powered Federated Edge Learning Systems. IEEE Trans. Commun. 2022, 70, 3220–3233. [Google Scholar] [CrossRef]
- He, J.; Guo, S.; Li, M.; Zhu, Y. AceFL: Federated Learning Accelerating in 6G-enabled Mobile Edge Computing Networks. IEEE Trans. Netw. Sci. Eng. 2022, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated Learning with Non-IID Data. arXiv 2018. [Google Scholar] [CrossRef]
- Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the Convergence of FedAvg on Non-IID Data. arXiv 2019. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Poor, H.V. Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization. Adv. Neural Inf. Process. Syst. 2020, 33, 7611–7623. [Google Scholar]
- Tahir, M.; Ali, M.I. On the Performance of Federated Learning Algorithms for IoT. IoT 2022, 3, 273–284. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, R.; Cheng, M.; Yu, F.; Hsieh, C.J. FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning. arXiv 2022, arXiv:2207.09653. [Google Scholar] [CrossRef]
- Li, Q.; Diao, Y.; Chen, Q.; He, B. Federated Learning on Non-IID Data Silos: An Experimental Study. In Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 965–978. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [Google Scholar] [CrossRef]
- Casella, B.; Esposito, R.; Cavazzoni, C.; Aldinucci, M. Benchmarking FedAvg and FedCurv for Image Classification Tasks. In Proceedings of the 1st Italian Conference on Big Data and Data Science, ITADATA2022, Milan, Italy, 20–21 September 2022; pp. 1–12. [Google Scholar]
- Sarikaya, Y.; Ercetin, O. Motivating Workers in Federated Learning: A Stackelberg Game Perspective. IEEE Netw. Lett. 2020, 2, 23–27. [Google Scholar] [CrossRef]
- Sprague, M.R.; Jalalirad, A.; Scavuzzo, M.; Capota, C.; Neun, M.; Do, L.; Kopp, M. Asynchronous Federated Learning for Geospatial Applications. In Proceedings of the ECML PKDD 2018 Workshops, Dublin, Ireland, 10–14 September 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 21–28. [Google Scholar]
- Chen, Y.; Ning, Y.; Slawski, M.; Rangwala, H. Asynchronous Online Federated Learning for Edge Devices with Non-IID Data. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 15–24. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, Z.; Zeadally, S.; Han, G.; Tong, S. Edge Computing-Enabled Internet of Vehicles: Towards Federated Learning Empowered Scheduling. IEEE Trans. Veh. Technol. 2022, 1–17. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, X.; Wang, C.; Wang, Y.; Shi, Z.; Jin, J.; Song, A.; Zhao, W.; Wen, L.; Zhang, T. FedAda: Fast-convergent adaptive federated learning in heterogeneous mobile edge computing environment. World Wide Web 2022. [Google Scholar] [CrossRef]
- Mahmood, A.; Hong, Y.; Ehsan, M.K.; Mumtaz, S. Optimal Resource Allocation and Task Segmentation in IoT Enabled Mobile Edge Cloud. IEEE Trans. Veh. Technol. 2021, 70, 13294–13303. [Google Scholar] [CrossRef]
- Wang, R.; Lai, J.; Zhang, Z.; Li, X.; Vijayakumar, P.; Karuppiah, M. Privacy-Preserving Federated Learning for Internet of Medical Things under Edge Computing. IEEE J. Biomed. Health Inform. 2022. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, W.; Zhang, Y.; Zhang, X.; Dou, W.; Qi, L.; Bhuiyan, M.Z.A. PSDF: Privacy-Aware IoV Service Deployment with Federated Learning in Cloud-Edge Computing. ACM Trans. Intell. Syst. Technol. 2021. accepted. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wu, D.; Lou, S.; Chen, B.; Yu, S. VPFL: A verifiable privacy-preserving federated learning scheme for edge computing systems. Digit. Commun. Netw. 2022. [Google Scholar] [CrossRef]
- Huba, D.; Nguyen, J.; Malik, K.; Zhu, R.; Rabbat, M.; Yousefpour, A.; Wu, C.J.; Zhan, H.; Ustinov, P.; Srinivas, H.; et al. PAPAYA: Practical, Private, and Scalable Federated Learning. In Proceedings of the Machine Learning and Systems, 5th MLSys Conference, California, CA, USA, 1 September 2022; Volume 4, pp. 814–832. [Google Scholar]
- Asad, M.; Moustafa, A.; Ito, T.; Aslam, M. Evaluating the Communication Efficiency in Federated Learning Algorithms. In Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 5–7 May 2021; pp. 552–557. [Google Scholar] [CrossRef]
- Ye, D.; Yu, R.; Pan, M.; Han, Z. Federated Learning in Vehicular Edge Computing: A Selective Model Aggregation Approach. IEEE Access 2020, 8, 23920–23935. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Z.; Guo, Y.; Gong, Y. Scalable and Low-Latency Federated Learning with Cooperative Mobile Edge Networking. arXiv 2022. [Google Scholar] [CrossRef]
- Zawad, S.; Yan, F.; Anwar, A. Local Training and Scalability of Federated Learning Systems. In Federated Learning: A Comprehensive Overview of Methods and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 213–233. [Google Scholar] [CrossRef]
- Wang, H.P.; Stich, S.; He, Y.; Fritz, M. ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; PMLR: Westminster, MA, USA, 2022; Volume 162, pp. 23034–23054. [Google Scholar]
- Sejan, M.A.S.; Rahman, M.H.; Shin, B.S.; Oh, J.H.; You, Y.H.; Song, H.K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors 2022, 22, 5405. [Google Scholar] [CrossRef]
- Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S. A joint learning and communications framework for federated learning over wireless networks. IEEE Trans. Wirel. Commun. 2020, 20, 269–283. [Google Scholar] [CrossRef]
- Khan, W.U.; Lagunas, E.; Ali, Z.; Javed, M.A.; Ahmed, M.; Chatzinotas, S.; Ottersten, B.; Popovski, P. Opportunities for Physical Layer Security in UAV Communication Enhanced with Intelligent Reflective Surfaces. arXiv 2022. [Google Scholar] [CrossRef]
- Khan, W.U.; Jameel, F.; Li, X.; Bilal, M.; Tsiftsis, T.A. Joint Spectrum and Energy Optimization of NOMA-Enabled Small-Cell Networks With QoS Guarantee. IEEE Trans. Veh. Technol. 2021, 70, 8337–8342. [Google Scholar] [CrossRef]
- Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, Z.; Kang, J.; Hossain, M.S. Deep anomaly detection for time-series data in industrial IoT: A communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020, 8, 6348–6358. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Communication-efficient federated learning and permissioned blockchain for digital twin edge networks. IEEE Internet Things J. 2020, 8, 2276–2288. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Wang, J.; Cui, T.; Zhang, L.; Li, C.; Chen, K.; Huang, H.; Zhou, X.; Zhou, W.; et al. The Intelligent Bi-directional Relaying Communication for Edge Intelligence based Industrial IoT Networks: Intelligent Bi-directional Relaying Communication. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2022, 9, e4. [Google Scholar] [CrossRef]
- Xie, C.; Chen, P.Y.; Zhang, C.; Li, B. Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM. arXiv 2022. [Google Scholar] [CrossRef]
- Khan, W.U.; Ihsan, A.; Nguyen, T.N.; Javed, M.A.; Ali, Z. NOMA-enabled Backscatter Communications for Green Transportation in Automotive-Industry 5.0. IEEE Trans. Ind. Inform. 2022. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Khuwaja, P.; Dev, K.; Lee, I.H.; Khan, W.; Wang, W.; Qureshi, N.M.F.; Magarini, M. A secure data sharing scheme in Community Segmented Vehicular Social Networks for 6G. IEEE Trans. Ind. Inform. 2022, 1–10. [Google Scholar] [CrossRef]
- Wan, Y.; Qu, Y.; Gao, L.; Xiang, Y. Privacy-preserving blockchain-enabled federated learning for B5G-Driven edge computing. Comput. Netw. 2022, 204, 108671. [Google Scholar] [CrossRef]
- Rjoub, G.; Wahab, O.A.; Bentahar, J.; Cohen, R.; Bataineh, A.S. Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection. Inf. Syst. Front. 2022. [Google Scholar] [CrossRef]
- Yin, T.; Li, L.; Ma, D.; Lin, W.; Liang, J.; Han, Z. FLIGHT: Federated Learning with IRS for Grouped Heterogeneous Training. J. Commun. Inf. Netw. 2022, 7, 135–144. [Google Scholar] [CrossRef]
- Ding, J.; Tramel, E.; Sahu, A.K.; Wu, S.; Avestimehr, S.; Zhang, T. Federated Learning Challenges and Opportunities: An Outlook. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 8752–8756. [Google Scholar] [CrossRef]
Source | Year | Description | EC | FL | HW | FD |
---|---|---|---|---|---|---|
[23] | 2017 | A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications | • | • | ||
[24] | 2021 | A survey on security and privacy of federated learning | • | • | ||
[25] | 2021 | A review of FL for Healthcare Informatics | • | • | • | |
[26] | 2020 | A review of applications in federated learning; industrial engineering to guide for the future landing application | • | • | ||
[27] | 2021 | Federated Learning for Internet of Things: A Comprehensive Survey | • | • | • | |
[28] | 2020 | Convergence of Edge Computing and Deep Learning: A Comprehensive Survey | • | • | • | |
[29] | 2020 | Federated Learning for Vehicular Internet of Things: Recent Advances and Open Issues | • | • | • | |
[30] | 2020 | Federated Learning in Mobile Edge Networks: A Comprehensive Survey | • | • | • | |
[6] | 2021 | A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection | • | • | ||
[13] | 2022 | Federated Learning for Smart Healthcare: A Survey | • | • | • | |
[31] | 2022 | Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges | • | • | • | |
[32] | 2022 | Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey | • | • | ||
[33] | 2022 | Decentral and Incentivized Federated Learning Frameworks: A Systematic Literature Review | • | • | • | |
[34] | 2022 | Federated Learning for IoUT: Concepts, Applications, Challenges and Opportunities | • | • | • | |
[35] | 2022 | Federated Learning Approach to Protect Healthcare Data over Big Data Scenario | • | • | ||
[36] | 2022 | Edge-Computing-Driven Internet of Things: A Survey | • | • | • | |
[37] | 2021 | An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies | • | |||
[38] | 2022 | On the Edge of the Deployment: A Survey on Multi-Access Edge Computing | • | • |
Framework Supported Features | FATE 1.5.0 | Flower 1.0.0 | PySyft 0.6.0 | OpenFL 1.3 | TFF 0.29.0 | |
---|---|---|---|---|---|---|
OS | Linux | • | • | • | • | • |
MacOS | • | • | • | • | • | |
Windows | • | • | • | |||
iOS | • | • | ||||
Android | • | • | ||||
Models | Neural network | • | • | • | • | • |
Linear models | • | • | ||||
Decision tree | • | • | • | • | ||
Data partitioning | Horizontal | • | • | • | • | • |
Vertical | • | • | • | |||
Settings | Cross-silo | • | • | • | • | |
Cross-device | • | • | • | |||
Support ARM architecture of edge devices | • | • | • |
Source | Year | Application Type | Description |
---|---|---|---|
[103] | 2019 | Mobile devices | Google GBoard for Andriod phones for predicting and forecasting user input |
[104] | 2019 | Mobile devices | Keyboard to predict emoji based on text entered by the user |
[105] | 2020 | Mobile devices | Apple uses FL to train a model for speech recognition |
[107] | 2020 | Mobile devices | A privacy-preserving mobility prediction framework based on phone data via FL |
[108] | 2019 | Mobile devices | Intelligent use of cooperation among mobile devices and edge nodes to exchange parameters for optimization of calculations, caching, and communication |
[110] | 2019 | IoT systems | Autonomous self-learning distributed anomaly detection system for IoT devices |
[111] | 2020 | IoT systems | It focuses on predicting user behavior in smart homes and provides a simple ML model with a time structure to achieve a decent trade-off between accuracy, communication, and computational cost |
[130] | 2021 | IoT systems | Survey and oveview provided new insights into applications in IoT, development tools, communication efficiency, security and privacy, migration, and scheduling in edge FL |
[45] | 2021 | IoT systems | A set of metrics such as sparsity, robustness, quantification, scalability, security, and privacy are defined to rigorously evaluate FL, proposing a taxonomy for FL in IoT networks |
[131] | 2022 | IoT systems | Anomaly detection on edge devices that can detect disruptions in IoT networks |
[132] | 2019 | IoT systems | Design and use of the FL framework for joint allocation of communication and computational resources |
[112] | 2020 | Industry | The platform, which was deployed in a collaboration between WeBank and Extreme Vision to help customers develop computer vision-based security monitoring solutions in smart city applications |
[113] | 2019 | Industry | Utilize FL in an industrial setting for tasks related to visual inspection of products; this approach could address manufacturing processes’ weaknesses while offering manufacturers privacy guarantees |
[114] | 2018 | Industry | Analysis and processing of large amounts of data and its subsequent use in the automotive, energy, robotics, agriculture, and healthcare industries |
[13] | 2022 | Industry | Deployment possibilities of FL and its digital twin in different deployment scenarios, such as smart cities |
[115] | 2020 | Industry | FL based on blockchain to implement asynchronous collaborative machine learning among distributed clients that own the data, with real historical data available from network systems |
[116] | 2022 | Industry | Use of FL in the manufacture of components for aerospace companies |
[117] | 2019 | Healthcare | Differential private learning for electronic health records via FL |
[118] | 2021 | Healthcare | Demonstration and adaptation of FL techniques for healthcare and electronic systems in healthcare such as drug discovery and disease prediction systems |
[119] | 2019 | Healthcare | FL community-based algorithm to predict mortality and length of hospital stay; electronic health records are clustered into communities within each hospital based on standard medical characteristics |
[120] | 2018 | Healthcare | Forecast hospitalizations for patients with heart disease during a target year |
[121] | 2019 | Healthcare | Implemented a distributed system to address intrusion detection in medical cyber-physical systems |
[122] | 2020 | Finance | The use of FL in open banking, where statistical heterogeneity, model heterogeneity, and access constraints within the banking system are addressed |
[123] | 2020 | Finance | Describes the problems in the process of approval of bank loans and at the same time the problems of a lack of data; the use of FL and the involvement of several financial institutions involved in the training |
[124] | 2019 | Finance | Analyze the loan risk assessment process; propose a predictive model using FL to predict the risk arising in loans |
[125] | 2022 | Finance | Create various systems and processes to simplify the bank’s decision making |
[127] | 2021 | Transport | Development of autonomous vehicles, how they communicate with each other and how they drive; acquisition of data from multiple vehicles simultaneously and subsequent training of a global model |
[128] | 2022 | Transport | Autonomous vehicle system; reacting to unpredictable things, automatically responding to acceleration and deceleration, braking and stopping, or getting into the right lane |
[129] | 2020 | Transport | Applications within vehicle networks and the development of intelligent transport systems such as autonomous driving, infotainment, and route planning |
Factor | Edge Computing | Cloud Computing |
---|---|---|
Computing resources | Low computing resources with limited performance, memory, and storage space | High computing performance, available memory and storage resources |
Data | Stored locally on edge devices | Stored centrally in data centers |
Latency | Real-time data processing | Data processing that takes a long time and is not time-urgent |
Connectivity | Problems with internet connection, limited internet connection | The need for a reliable internet connection without interruptions |
Type | Manufacturer | Pros | Cons |
---|---|---|---|
SBC | Nvidia Jetson Family, Google Coral, Rasperry Pi, Bearkey, Bitmain | ARM architecture with very low power consumption, compact size, possibility to power devices from batteries | Very low performance compared to other listed devices, limited, computing and memory resources |
Mini-PC | Intel or AMD | Solid performance for processing simple AI and ML models, processing speed, lower price | Problems with cooling system, lower efficiency, and higher power consumption |
FPGA | Intel, Xilinx, Microchip Technology | High performance per watt of power consumption, lower costs for large-scale operations, and good performance for calculations and tasks that require more complex calculations | Requires a significant amount of storage space and external memory, programmed for only one specific task |
Source | Year | Type of Algorithms | Description |
---|---|---|---|
[156] | 2022 | FedAvg, FedProx, FedPD, SCAFFOLD, Fedmed | Analysis of heterogeneity in FL and overview of practical problems caused by systemic and statistical heterogeneity |
[157] | 2022 | FedDM, FedAvg, FedProx, FedNova, SCAFFOLD | Experimental tests that compare FedDM with multiple algorithms that perform image classification, model performance, and model accuracy |
[158] | 2022 | FedAvg, FedProx, FedNova, SCAFFOLD | Overview and design of comprehensive data distribution strategies to cover non-IID cases. Extensive experiments to evaluate state-of-the-art algorithms currently in use |
[159] | 2021 | FedAvg, FedBCM, FedPer, FedDF, FeSEM | A detailed analysis of the influence of non-IID data on parametric and non-parametric machine learning models in both horizontal and vertical learning. |
[160] | 2022 | FedAvg, FedCurv | Empirical behavior in common scenarios on non-IID data and experiments that can lead to increased performance and reduced communication costs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brecko, A.; Kajati, E.; Koziorek, J.; Zolotova, I. Federated Learning for Edge Computing: A Survey. Appl. Sci. 2022, 12, 9124. https://doi.org/10.3390/app12189124
Brecko A, Kajati E, Koziorek J, Zolotova I. Federated Learning for Edge Computing: A Survey. Applied Sciences. 2022; 12(18):9124. https://doi.org/10.3390/app12189124
Chicago/Turabian StyleBrecko, Alexander, Erik Kajati, Jiri Koziorek, and Iveta Zolotova. 2022. "Federated Learning for Edge Computing: A Survey" Applied Sciences 12, no. 18: 9124. https://doi.org/10.3390/app12189124
APA StyleBrecko, A., Kajati, E., Koziorek, J., & Zolotova, I. (2022). Federated Learning for Edge Computing: A Survey. Applied Sciences, 12(18), 9124. https://doi.org/10.3390/app12189124