Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Outcome Variables
2.3. Exercise Bouts
2.4. Statistical Analysis
3. Results
3.1. VO2 Level and HR
3.2. Oxidative Stress and Antioxidant Enzymes Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ferrer, M.D.; Capó, X.; Martorell, M.; Busquets-Cortés, C.; Bouzas, C.; Carreres, S.; Mateos, D.; Sureda, A.; Tur, J.A.; Pons, A. Regular practice of moderate physical activity by older adults ameliorates their anti-inflammatory status. Nutrients 2018, 10, 1780. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Al-Mansoori, L.; Al-Jaber, H.; Georgakopoulos, C.; Donati, F.; Botrè, F.; Sellami, M.; Elrayess, M.A. Assessment of Serum Cytokines and Oxidative Stress Markers in Elite Athletes Reveals Unique Profiles Associated with Different Sport Disciplines. Front. Physiol. 2020, 11, 600888. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Vizuete, A.; Veal, E.A. Caenorhabditis elegans as a model for understanding ROS function in physiology and disease. Redox Biol. 2017, 11, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Das, A.; Chaffee, S.; Roy, S.; Sen, C.K. Reactive oxygen species, oxidative damage and cell death. In Immunity and Inflammation in Health and Disease: Emerging Roles of Nutraceuticals and Functional Foods in Immune Support; Elsevier: Amsterdam, The Netherlands, 2017; pp. 45–55. [Google Scholar] [CrossRef]
- Moris, D.; Spartalis, M.; Tzatzaki, E.; Spartalis, E.; Karachaliou, G.-S.; Triantafyllis, A.S.; Karaolanis, G.I.; Tsilimigras, D.I.; Theocharis, S. The role of reactive oxygen species in myocardial redox signalling and regulation. Ann. Transl. Med. 2017, 5, 324. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Li, J.; Liu, Z.; Chuang, C.-C.; Yang, W.; Zuo, L. Redox mechanism of reactive oxygen species in exercise. Front. Physiol. 2016, 7, 486. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Characterization of Exercise-Induced Cytokine Release, the Impacts on the Body, the Mechanisms and Modulations. International J. Sports Exerc. Med. 2019, 5, 122. [Google Scholar] [CrossRef]
- Lu, Y.; Wiltshire, H.D.; Baker, J.S.; Wang, Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology 2021, 10, 1272. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signalling. Antioxid. Redox Signal. 2013, 18, 1208–1246. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef]
- Theofilidis, G.; Bogdanis, G.; Koutedakis, Y.; Karatzaferi, C. Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports 2018, 6, 153. [Google Scholar] [CrossRef]
- Krüger, K.; Alack, K.; Ringseis, R.; Mink, L.; Pfeifer, E.; Schinle, M.; Gindler, K.; Kimmelmann, L.; Walscheid, R.; Muders, K.; et al. Apoptosis of T-Cell Subsets after Acute High-Intensity Interval Exercise. Med. Sci. Sports Exerc. 2016, 48, 2021–2029. [Google Scholar] [CrossRef]
- Pal, S.; Chaki, B.; Chattopadhyay, S.; Bandyopadhyay, A. High-intensity exercise-induced oxidative stress and skeletal muscle damage in postpubertal boys and girls: A comparative study. J. Strength Cond. Res. 2018, 32, 1045–1052. [Google Scholar] [CrossRef]
- Margaritelis, N.V.; Theodorou, A.A.; Paschalis, V.; Veskoukis, A.S.; Dipla, K.; Zafeiridis, A.; Panayiotou, G.; Vrabas, I.S.; Kyparos, A.; Nikolaidis, M.G. Adaptations to endurance training depend on exercise-induced oxidative stress: Exploiting redox interindividual variability. Acta Physiol. 2018, 222(2), e12898. [Google Scholar] [CrossRef]
- Małkiewicz, M.A.; Szarmach, A.; Sabisz, A.; Cubała, W.J.; Szurowska, E.; Winklewski, P.J. Blood-brain barrier permeability and physical exercise. J. Neuroinflammation 2019, 16, 15. [Google Scholar] [CrossRef]
- Scheffer, D.D.L.; Latini, A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165823. [Google Scholar] [CrossRef]
- Kawamura, T.; Muraoka, I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants 2018, 7, 119. [Google Scholar] [CrossRef]
- Martínez-Noguera, F.; Alcaraz, P.; Ortolano-Ríos, R.; Dufour, S.; Marín-Pagán, C. Differences between professional and amateur cyclists in endogenous antioxidant system profile. Antioxidants 2021, 10, 282. [Google Scholar] [CrossRef]
- Chavarrias, M.; Carlos-Vivas, J.; Collado-Mateo, D.; Pérez-Gómez, J. Health Benefits of Indoor Cycling: A Systematic Review. Medicina 2019, 55, 452. [Google Scholar] [CrossRef] [Green Version]
- Kolsung, E.B.; Ettema, G.; Skovereng, K. Physiological Response to Cycling with Variable Versus Constant Power Output. Front Physiol. 2020, 11, 1098. [Google Scholar] [CrossRef]
- ACSM. Physical Activity Guidelines. 2021. Available online: https://www.acsm.org/read-research/trending-topics-resource-pages/physical-activity-guidelines (accessed on 11 March 2022).
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; LaMonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Rich, R.G. Effects of high- and low-intensity exercise training on aerobic capacity and blood lipids. Med. Sci. Sports Exerc. 1984, 16, 269–274. [Google Scholar] [CrossRef]
- McGinnis, G.; Kliszczewicz, B.; Barberio, M.; Ballmann, C.; Peters, B.; Slivka, D.; Dumke, C.; Cuddy, J.; Hailes, W.; Ruby, B.; et al. Acute hypoxia and exercise-induced blood oxidative stress. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 684–693. [Google Scholar] [CrossRef]
- McAllister, M.J.; Basham, S.A.; Waldman, H.S.; Smith, J.W.; Mettler, J.A.; Butawan, M.B.; Bloomer, R.J. Effects of psychological stress during exercise on markers of oxidative stress in young healthy, trained men. Physiol. Behav. 2019, 198, 90–95. [Google Scholar] [CrossRef]
- Suzuki, K. Chronic Inflammation as an Immunological Abnormality and Effectiveness of Exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef]
- Spanidis, Y.; Stagos, D.; Papanikolaou, C.; Karatza, K.; Theodosi, A.; Veskoukis, A.S.; Deli, C.K.; Poulios, A.; Koulocheri, S.D.; Jamurtas, A.Z.; et al. Resistance-Trained Individuals Are Less Susceptible to Oxidative Damage after Eccentric Exercise. Oxidative Med. Cell. Longev. 2018, 2018, 6857190. [Google Scholar] [CrossRef]
- Tofas, T.; Draganidis, D.; Deli, C.K.; Georgakouli, K.; Fatouros, I.G.; Jamurtas, A.Z. Exercise-induced regulation of redox status in cardiovascular diseases: The role of exercise training and detraining. Antioxidants 2020, 9, 13. [Google Scholar] [CrossRef]
- Arazi, H.; Eghbali, E.; Suzuki, K. Creatine Supplementation, Physical Exercise and Oxidative Stress Markers: A Review of the Mechanisms and Effectiveness. Nutrients 2021, 13, 869. [Google Scholar] [CrossRef]
- Thivel, D.; Tremblay, A.; Genin, P.M.; Panahi, S.; Riviere, D.; Duclos, M. Physical Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in Occupational Health. Front. Public Health 2018, 6, 288. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, K.; Hansen, J.; Sue, D.Y.; Stringer, W.; Whipp, B.J. Principles of Exercise Testing and Interpretation: Pathophysiology and Clinical Applications; LWW: Baltimore, MA, USA, 2004. [Google Scholar]
- American College of Sports Medicine; Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Alphen aan den Rijn, PA, USA, 2018. [Google Scholar]
- Pilz, J.; Meineke, I.; Gleiter, C.H. Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J. Chromatogr. B Biomed. Sci. Appl. 2000, 742, 315–325. [Google Scholar] [CrossRef]
- Beyer, W.F., Jr.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Daud, D.M.A.; Yusoff, A.S.M.; Ngah, W.Z.W. Elevation of leukocyte counts is associated with an increase in the intensity and duration of exercise. Sport Sci. Health 2018, 15, 73–83. [Google Scholar] [CrossRef]
- Hagberg, J.M.; Nagle, F.J.; Carlson, J.L. Transient O2 uptake response at the onset of exercise. Journal of Applied Physiology: Respiratory. Environ. Exerc. Physiol. 1978, 44, 90–92. [Google Scholar] [CrossRef]
- Ignaszewski, M.; Lau, B.; Wong, S.; Isserow, S. The science of exercise prescription: Martti Karvonen and his contributions. Br. Columbia Med. J. 2017, 59, 38–41. [Google Scholar]
- Garaiová, I.; Muchová, J.; Šustrová, M.; Blažíček, P.; Sivoňová, M.; Kvasnička, P.; Pueschel, S.; Ďuračková, Z. The relationship between antioxidant systems and some markers of oxidative stress in persons with Down syndrome. Biol. Sect. Cell. Mol. Biol. 2004, 59, 787–794. [Google Scholar]
- Kirwan, J.P.; Sacks, J.; Nieuwoudt, S. The essential role of exercise in the management of type 2 diabetes. Clevel. Clin. J. Med. 2017, 84, S15. [Google Scholar] [CrossRef]
- Tasci, G.; Baykara, S.; Gurok, M.G.; Atmaca, M. Effect of exercise on therapeutic response in depression treatment. Psychiatry Clin. Psychopharmacol. 2019, 29, 137–143. [Google Scholar] [CrossRef]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181. [Google Scholar] [CrossRef]
- Pingitore, A.; Pace, G.; Lima, P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef]
- Scribbans, T.D.; Vecsey, S.; Hankinson, P.B.; Foster, W.S.; Gurd, B.J. The Effect of Training Intensity on VO2max in Young Healthy Adults: A Meta-Regression and Meta-Analysis. Int. J. Exerc. Sci. 2016, 9, 230–247. [Google Scholar]
- Arboleda-Serna, V.H.; Patiño-Villada, F.A.; Pinzón-Castro, D.A.; Arango-Vélez, E.F. Effects of low-volume, high-intensity interval training on maximal oxygen consumption, body fat percentage and health-related quality of life in women with overweight: A randomized controlled trial. J. Exerc. Sci. Fit. 2022, 20, 108–112. [Google Scholar] [CrossRef]
- Quindry, J.C.; Stone, W.L.; King, J.; Broeder, C.E. The Effects of Acute Exercise on Neutrophils and Plasma Oxidative Stress. Med. Sci. Sports Exerc. 2003, 35, 1139–1145. [Google Scholar] [CrossRef]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes’ Health. Nutrients 2019, 11, 1353. [Google Scholar] [CrossRef]
- Sakellariou, G.K.; Jackson, M.J.; Vasilaki, A. Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic. Res. 2014, 48, 12–29. [Google Scholar] [CrossRef]
- Polli, A.; Van Oosterwijck, J.; Nijs, J.; Marusic, U.; De Wandele, I.; Paul, L.; Meeus, M.; Moorkens, G.; Lambrecht, L.; Ickmans, K. Relationship Between Exercise-induced Oxidative Stress Changes and Parasympathetic Activity in Chronic Fatigue Syndrome: An Observational Study in Patients and Healthy Subjects. Clin. Ther. 2019, 41, 641–655. [Google Scholar] [CrossRef]
- Wiecek, M.; Szymura, J.; Maciejczyk, M.; Kantorowicz, M.; Szygula, Z. Anaerobic Exercise-Induced Activation of Antioxidant Enzymes in the Blood of Women and Men. Front. Physiol. 2018, 9, 1006. [Google Scholar] [CrossRef]
- Perrone, M.A.; Lombardo, M. Oxidative Stress, Redox State and Antioxidant Supplementation in Physical Exercise and Professional Sports: A brief review. Acta Med. Mediterr. 2020, 36, 1245–1251. [Google Scholar] [CrossRef]
- Evans, L.W.; Omaye, S.T. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress. Antioxidants 2017, 6, 5. [Google Scholar] [CrossRef]
- Zuccarelli, L.; Porcelli, S.; Rasica, L.; Marzorati, M.; Grassi, B. Comparison between Slow Components of HR and V˙O2 Kinetics: Functional Significance. Med. Sci. Sports Exerc. 2018, 50, 1649–1657. [Google Scholar] [CrossRef]
- Souissi, W.; Bouzid, M.A.; Farjallah, M.A.; Mahmoud L ben Boudaya, M.; Engel, F.A.; Sahnoun, Z. Effect of different running exercise modalities on post-exercise oxidative stress markers in trained athletes. Int. J. Environ. Res. Public Health 2020, 17, 3729. [Google Scholar] [CrossRef]
- Ammar, A.; Trabelsi, K.; Boukhris, O.; Glenn, J.M.; Bott, N.; Masmoudi, L.; Hakim, A.; Chtourou, H.; Driss, T.; Hoekelmann, A.; et al. Effects of Aerobic-, Anaerobic- and Combined-Based Exercises on Plasma Oxidative Stress Biomarkers in Healthy Untrained Young Adults. Int. J. Environ. Res. Public Health 2020, 17, 2601. [Google Scholar] [CrossRef]
- Chaki, B.; Pal, S.; Chattopadhyay, S.; Bandyopadhyay, A. High-intensity exercise-induced oxidative stress in sedentary pre-pubertal & post-pubertal boys: A comparative study. Indian J. Med. Res. 2019, 150, 167–174. [Google Scholar] [CrossRef]
- Alves, J.O.; Pereira, L.M.; Monteiro, I.C.C.D.R.; dos Santos, L.H.P.; Ferraz, A.S.M.; Loureiro, A.C.C.; Lima, C.C.; Leal-Cardoso, J.H.; Carvalho, D.P.; Fortunato, R.S.; et al. Strenuous Acute Exercise Induces Slow and Fast Twitch-Dependent NADPH Oxidase Expression in Rat Skeletal Muscle. Antioxidants 2020, 9, 57. [Google Scholar] [CrossRef]
- Blum, J.; Fridovich, I. Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys. 1985, 240, 500–508. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef]
- Jacob, C.; Zouhal, H.; Prioux, J.; Gratas-Delamarche, A.; Delamarche, P. Effect of the intensity of training on catecholamine responses to supramaximal exercise in endurance-trained men. Eur. J. Appl. Physiol. 2004, 91, 35–40. [Google Scholar] [CrossRef]
- Lefèbvre, P.J.; Luyckx, A.S. Factors Controlling Glucagon Secretion. Regulatory Mechanisms of Carbohydrate Metabolism. Pergamon 1978, 42, 221–226. [Google Scholar] [CrossRef]
- Voet, D.; Voet, J.G.; Pratt, C.W. Fundamentals of Biochemistry, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Georgakouli, K.; Manthou, E.; Fatouros, I.G.; Deli, C.K.; Spandidos, D.A.; Tsatsakis, A.M.; Kouretas, D.; Koutedakis, Y.; Theodorakis, Y.; Jamurtas, A.Z. Effects of acute exercise on liver function and blood redox status in heavy drinkers. Exp. Ther. Med. 2015, 10, 2015–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accattato, F.; Greco, M.; Pullano, S.A.; Carè, I.; Fiorillo, A.S.; Pujia, A.; Montalcini, T.; Foti, D.P.; Brunetti, A.; Gulletta, E. Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PLoS ONE 2017, 12, e0178900. [Google Scholar] [CrossRef] [PubMed]
- Tauffenberger, A.; Magistretti, P.J. Reactive Oxygen Species: Beyond Their Reactive Behavior. Neurochem. Res. 2021, 46, 77–87. [Google Scholar] [CrossRef]
- McNulty, C.; Robergs, R. Influence of increment magnitude and exercise intensity on VO2 kinetics, time to steady state and tissue oxygenation. J. Sci. Med. Sport 2014, 18, e61. [Google Scholar] [CrossRef]
- De Freitas, M.C.; Gerosa-Neto, J.; Zanchi, N.E.; Lira, F.S.; Rossi, F.E. Role of metabolic stress for enhancing muscle adaptations: Practical applications. World J. Methodol. 2017, 7, 46–54. [Google Scholar] [CrossRef]
- Hedayatpour, N.; Falla, D. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. BioMed Res. Int. 2015, 2015, 193741. [Google Scholar] [CrossRef]
- Ozaki, H.; Loenneke, J.P.; Buckner, S.L.; Abe, T. Muscle growth across a variety of exercise modalities and intensities: Contributions of mechanical and metabolic stimuli. Med. Hypotheses 2016, 88, 22–26. [Google Scholar] [CrossRef]
- de Melo dos Santos, R.; Costa, F.C.; Saraiva, T.S.; Callegari, B. Muscle fatigue in participants of indoor cycling. Muscles Ligaments Tendons J. 2017, 7, 173–179. [Google Scholar] [CrossRef]
- García-López, J.; Díez-Leal, S.; Ogueta-Alday, A.; Larrazabal, J.; Rodríguez-Marroyo, J.A. Differences in pedalling technique between road cyclists of different competitive levels. J. Sports Sci. 2016, 34, 1619–1626. [Google Scholar] [CrossRef]
- Ji, L.L.; Kang, C.; Zhang, Y. Exercise-induced hormesis and skeletal muscle health. Free Radic. Biol. Med. 2016, 98, 113–122. [Google Scholar] [CrossRef]
- Johnson, B.D.; Padilla, J.; Wallace, J.P. The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men. Eur. J. Appl. Physiol. 2012, 112, 33–42. [Google Scholar] [CrossRef]
- Atakan, M.M.; Güzel, Y.; Bulut, S.; Koşar, N.; McConell, G.K.; Turnagöl, H.H. Six high-intensity interval training sessions over 5 days increases maximal oxygen uptake, endurance capacity, and sub-maximal exercise fat oxidation as much as 6 high-intensity interval training sessions over 2 weeks. J. Sport Health Sci. 2021, 10, 478–487. [Google Scholar] [CrossRef]
- Saqib, Z.A.; Dai, J.; Menhas, R.; Mahmood, S.; Karim, M.; Sang, X.; Weng, Y. Physical Activity is a Medicine for Non-Communicable Diseases: A Survey Study Regarding the Perception of Physical Activity Impact on Health Wellbeing. Risk Manag. Healthc. Policy 2020, 13, 2949–2962. [Google Scholar] [CrossRef]
- Boccatonda, A.; Tripaldi, R.; Davì, G.; Santilli, F. Oxidative Stress Modulation Through Habitual Physical Activity. Curr. Pharm. Des. 2016, 22, 3648–3680. [Google Scholar] [CrossRef]
- Jakus, T.; Jurdana, M.; Žiberna, L.; Pražnikar, Z.J. Acute moderate-intensity exercise increases total antioxidant capacity and anti-inflammatory responses in competitive cyclists: The role of adiponectin. Eur. J. Inflamm. 2021, 19, 2058739221998890. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Carretero, A.; Millan-Domingo, F.; Garcia-Dominguez, E.; Correas, A.G.; Olaso-Gonzalez, G.; Viña, J. Redox-related biomarkers in physical exercise. Redox Biol. 2021, 42, 101956. [Google Scholar] [CrossRef]
- Bessa, A.L.; Oliveira, V.N.; Agostini, G.G.; Oliveira, R.J.; Oliveira, A.C.; White, G.E.; Wells, G.D.; Teixeira, D.N.; Espindola, F.S. Exercise Intensity and Recovery. J. Strength Cond. Res. 2016, 30, 311–319. [Google Scholar] [CrossRef]
- Taherkhani, S.; Suzuki, K.; Castell, L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants 2020, 9, 886. [Google Scholar] [CrossRef]
Characteristics | Mean ± SE | |
Age | 20.8 ± 0.45 years | |
Bodyweight | 58.8 ± 2.39 kg | |
Height | 167.5 ± 1.12 cm | |
BMI | 20.9 ± 0.84 (kg/m−2) | |
Fat Mass | 10.8 ± 1.20 kg | |
Body Fat | 17.4 ± 1.25% | |
Measured O2pk | 36.6 ± 1.17 (mL/min/kg) | |
Predicted O2pk | 48.1 ± 1.10 * (mL/min/kg) | |
Nutrient level | Pre-training | Post-training |
Calorie | 1853 ± 70 kcal | 1771 ± 85 kcal |
Protein | 112 ± 3 g | 118 ± 2 g |
Carbohydrate | 281 ± 18 | 272 ± 16 |
Fat | 38 ± 3 | 39 ± 2 |
Retinol | 197 ± 30 µg | 193 ± 32 µg |
Carotene | 1511 ± 423 µg | 1482 ± 512 µg |
Ascorbic Acid | 83 ± 12 mg | 88 ± 13 mg |
Duration (Mins) | Intensity (%) | O2 (Mean ± SE) | Exercise HR (Mean ± SE) |
---|---|---|---|
10 | 50% O2pk | 20.30 ± 1.088 | 127.56 ± 3.586 |
20 | 20.31 ± 0.983 | 126.36 ± 3.298 | |
30 | 20.37 ± 1.030 | 126.28 ± 3.246 | |
10 | 60% O2pk | 24.15 ± 1.001 | 148.68 ± 3.718 |
20 | 24.05 ± 0.926 | 148.08 ± 3.577 | |
30 | 24.35 ± 1.004 | 149.56 ± 3.663 | |
10 | 70% O2pk | 27.58 ± 1.125 | 166.64 ± 4.206 |
20 | 27.88 ± 1.147 | 167.64 ± 4.233 | |
30 | 27.90 ± 1.056 | 169.32 ± 3.945 |
I % O2pk | D mins | SOD (Unit/mgHb) | CAT (u/s/mgHb) | GPx (Unit/min/mgHb) | AE (Unit/min/mgHb) | MDA (nmol/mL) | |
---|---|---|---|---|---|---|---|
(Mean ± SEM) | |||||||
50% | 10 | Pre | 0.83 ± 0.049 | 0.29 ± 0.019 | 6.009 ± 0.0002 | 3.172 ± 0.3333 | 9.23 ± 0.357 |
Post | 1.41 ± 0.082 * | 0.36 ± 0.018 * | 5.621 ± 0.0001 | 4.009 ± 0.2914 | 10.28 ± 0.300 * | ||
% changes | 93.3 ± 22.02 | 44.6 ± 14.62 | −4.5 ± 3.00 | 61.52 ± 21.804 | 12.7 ± 1.81 | ||
60% | 10 | Pre | 0.91 ± 0.096 | 0.40 ± 0.022 | 5.507 ± 0.0001 | 2.447 ± 0.2873 | 8.41 ± 0.381 |
Post | 1.28 ± 0.044 * | 0.41 ± 0.021 | 5.112 ± 0.0001 | 3.248 ± 0.1839 * | 9.97 ± 0.322 * | ||
% changes | 139.3 ± 47.45 | 4.9 ± 4.77 | −4.3 ± 4.95 | 147.51 ± 51.332 | 21.5 ± 3.79 | ||
70% | 10 | Pre | 1.14 ± 0.048 | 0.34 ± 0.012 | 7.281 ± 0.0004 | 3.413 ± 0.1889 | 10.01 ± 0.360 |
Post | 1.68 ± 0.069 * | 0.31 ± 0.018 * | 6.491 ± 0.0004 | 5.679 ± 0.4152 * | 12.98 ± 0.356 * | ||
% changes | 52.6 ± 8.72 | −8.6 ± 3.49 | −2.9 ± 8.27 | 72.07 ± 11.272 | 32.1 ± 3.91 | ||
50% | 20 | Pre | 1.18 ± 0.052 | 0.45 ± 0.027 | 6.941 ± 0.0002 | 2.842 ± 0.2218 | 9.10 ± 0.265 |
Post | 1.54 ± 0.092 * | 0.49 ± 0.029 * | 6.058 ± 0.0001 * | 3.324 ± 0.3163 | 10.31 ± 0.289 * | ||
% changes | 34.7 ± 8.74 | 12.8 ± 3.79 | −10.4 ± 3.75 | 21.59 ± 7.984 | 14.7 ± 3.54 | ||
60% | 20 | Pre | 1.19 ±0.082 | 0.41 ± 0.019 | 6.755 ± 0.0001 | 2.994 ± 0.2171 | 8.58 ± 0.383 |
Post | 1.54 ± 0.051 * | 0.42 ± 0.027 | 6.303 ± 0.0001 * | 4.189 ± 0.4255 * | 10.57 ± 0.255 * | ||
% changes | 44.8 ± 12.16 | 3.8 ± 6.17 | −5.7 ± 2.69 | 49.34 ± 12.552 | 30.4 ± 7.45 | ||
70% | 20 | Pre | 1.15 ±0.060 | 0.54 ± 0.031 | 6.573 ± 0.0002 | 2.308 ± 0.1951 | 9.37 ± 0.341 |
Post | 1.51 ± 0.073 * | 0.49 ± 0.037 * | 6.079 ± 0.0003 * | 3.496 ± 0.3218 * | 13.20 ± 0.249 * | ||
% changes | 40.5 ± 10.79 | −9.7 ± 3.77 | −7.1 ± 3.32 | 59.59 ± 13.852 | 44.6 ± 4.88 | ||
50% | 30 | Pre | 1.01 ± 0.067 | 0.40 ± 0.023 | 7.363 ± 0.0001 | 2.617 ± 0.1938 | 8.49 ± 0.277 |
Post | 1.21 ± 0.066 * | 0.41 ± 0.026 | 6.995 ± 0.0001 * | 3.070 ± 0.2187 | 10.16 ± 0.261 * | ||
% changes | 30.8 ± 10.38 | 4.9 ± 5.38 | −4.1 ± 2.26 | 28.35 ± 10.470 | 21.3 ± 3.26 | ||
60% | 30 | Pre | 1.73 ± 0.112 | 0.37 ± 0.024 | 5.948 ± 0.0001 | 5.319 ± 0.5969 | 9.06 ± 0.324 |
Post | 1.99 ± 0.134 * | 0.34 ± 0.021 * | 5.336 ± 0.0001 * | 6.373 ± 0.5307 * | 11.88 ± 0.365 * | ||
% changes | 20.2 ± 8.07 | −6.5 ± 2.93 | −10.3 ± 1.88 | 32.55 ± 10.239 | 32.3 ± 2.99 | ||
70% | 30 | Pre | 1.17 ± 0.053 | 0.33 ± 0.019 | 8.031 ± 0.0002 | 3.835 ± 0.3066 | 8.36 ± 0.369 |
Post | 0.87 ± 0.039 * | 0.29 ± 0.017 * | 7.610 ± 0.0001 * | 3.076 ± 0.1973 * | 13.85 ± 0.302 * | ||
% changes | −22.7 ± 4.10 | −7.8 ± 3.81 | −4.8 ± 1.31 | −11.53 ± 7.246 | 72.5 ± 7.41 | ||
ANOVA | IXD | F = 1.68 df = 2.055 | F = 3.38 * df = 2.146 | F = 0.524 df = 1.99 | F = 2.117 df = 1.982 | F = 4.28 * df = 2.989 | |
I | F = 5.58 * df = 1.289 | F = 14.24* df = 1.619 | F = 0.152 df = 1.48 |
F = 3.035 df = 1.32 | F = 54.24 * df = 2 | ||
D | F = 11.82 * df = 1.166 | F = 5.96 * df = 1.347 | F = 0.65 df = 1.49 | F = 11.63 * df = 1.201 | F = 8.62 * df = 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awang Daud, D.M.; Ahmedy, F.; Baharuddin, D.M.P.; Zakaria, Z.A. Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration. Appl. Sci. 2022, 12, 9161. https://doi.org/10.3390/app12189161
Awang Daud DM, Ahmedy F, Baharuddin DMP, Zakaria ZA. Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration. Applied Sciences. 2022; 12(18):9161. https://doi.org/10.3390/app12189161
Chicago/Turabian StyleAwang Daud, D. Maryama, Fatimah Ahmedy, Dayang Marshitah Pg Baharuddin, and Zainul Amiruddin Zakaria. 2022. "Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration" Applied Sciences 12, no. 18: 9161. https://doi.org/10.3390/app12189161
APA StyleAwang Daud, D. M., Ahmedy, F., Baharuddin, D. M. P., & Zakaria, Z. A. (2022). Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration. Applied Sciences, 12(18), 9161. https://doi.org/10.3390/app12189161