Hybridization of DRASTIC Method to Assess Future GroundWater Vulnerability Scenarios: Case of the Tebessa-Morsott Alluvial Aquifer (Northeastern Algeria)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Geological and Geophysical Properties
2.3. Hydrogeological Setting
2.4. The Conceptual Framework
2.5. Groundwater Vulnerability Using DRASTIC Method
2.6. DRASTIC Validation
2.7. Groundwater Modelling
3. Results and Discussions
3.1. Model Geometry and Boundary Conditions
3.2. Flow Simulation Model
3.2.1. Steady-State Model
3.2.2. Transient Model
3.3. Data Preparation and Analysis of Vulnerability Factors
- Depth to water
- Net Recharge
- Aquifer media
- Soil media
- Topography
- Impact of the vadose zone
- Hydraulic Conductivity
3.4. Groundwater Vulnerability Using DRASTIC Index
3.5. Drastic Model Validation
3.6. Future Vulnerability Assessment
3.6.1. First Scenario
3.6.2. Second Scenario
4. Conclusions
- The study area is classified at a average–high pollution risk of groundwater and environmental deterioration.
- The increase or decrease in the pollution risk for groundwater (high or low vulnerability) is closely related to the piezometric level variation (groundwater depth) caused by the pumping rate (overexploitation or pumping reduction).
- Overexploitation ensures the protection of the water table (deep piezometric level) from all pollution types observed on the ground surface.
- Conversely, overexploitation has a negative effect on the hydrodynamic state of the aquifer: significant drawdown, depletion of the water table, etc.
- Some measurements should be proposed to protect this groundwater system.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Zereg, S.; Boudoukha, A.; Benaabidate, L. Impacts of natural conditions and anthropogenic activities on groundwater quality in Tebessa plain, Algeria. Sustain. Environ. Res. 2018, 28, 340–349. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Bertaki, M. Water use in agriculture on Mediterranean islands: Present situation and future perspective. In Water Management in Arid and Semi-Arid Regions: Interdisciplinary Perspectives; Koundouri, P., Karousakis, K., Assimakopoulos, D., Jeffrey, P., Lange, M.A., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2006; pp. 136–157. [Google Scholar]
- Karousakis, K.; Koundouri, P. A typology of economic instruments and methods for efficient water resources management in arid and semi-arid regions. In Strategic Water Management in Arid and Semi-Arid Regions: Interdisciplinary Perspectives; Koundouri, P., Karousakis, K., Assimacopoulos, D., Eds.; Edward-Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2006; 288p. [Google Scholar]
- Rama, F.; Busico, G.; Arumi, J.L.; Kazakis, N.; Colombani, N.; Marfella, L.; Hirata, R.; Kruse, E.E.; Sweeney, P.; Mastrocicco, M. Assessment of intrinsic aquifer vulnerability at continental scale through a critical application of the drastic framework: The case of South America. Sci. Total Environ. 2022, 823, 153748. [Google Scholar] [CrossRef]
- Baalousha, H.M. Groundwater Vulnerability Mapping of Qatar Aquifers. J. Afr. Earth Sci. 2016, 124, 75–93. [Google Scholar] [CrossRef]
- Albinet, M.; Margat, J. Cartographie de la vulnérabilité à la pollution des nappes d’eausouterraine. Bull. BRGM 2ème Série 1970, 3, 13–22. [Google Scholar]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Sci. Total Environ. 2014, 476–477, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Ameur, M.; Aouiti, S.; Hamzaoui-Azaza, F.; Cheikha, L.B.; Gueddari, M. Vulnerability assessment, transport modeling and simulation of nitrate in groundwater using SI method and modflow-MT3DMS software: Case of Sminja aquifer, Tunisia. Environ. Earth Sci. 2021, 80, 220. [Google Scholar] [CrossRef]
- Boufekane, A.; Saigih, O. Application of groundwater vulnerability overlay and index methods to the Jijel Plain Area (Algeria). Groundwater 2018, 56, 143–156. [Google Scholar] [CrossRef]
- Baalousha, H.M.; Tawabini, B.; Seers, T.D. Fuzzy or Non-Fuzzy? A Comparison between Fuzzy Logic-Based Vulnerability Mapping and DRASTIC Approach Using a Numerical Model. A Case Study from Qatar. Water 2021, 13, 1288. [Google Scholar] [CrossRef]
- Boufekane, A.; Maizi, D.; Madene, E.; Busico, G.; Zghibi, A. Hybridization of GALDIT method to assess actual and future coastal vulnerability to seawater intrusion. J. Environ. Manag. 2022, 318, 115580. [Google Scholar] [CrossRef]
- Jahromi, M.N.; Gomeh, Z.; Busico, G.; Barzegar, R.; Samany, N.N.; Aalami, M.T.; Tedesco, D.; Mastrocicco, M.; Kazakis, N. Developing a SINTACS-based method to map groundwater multi-pollutant vulnerability using evolutionary algorithms. Environ. Sci. Pollut. Res. 2021, 28, 7854–7869. [Google Scholar] [CrossRef] [PubMed]
- Busico, G.; Kazakis, N.; Cuoco, E.; Colombani, N.; Tedesco, D.; Voudouris, K.; Mastrocicco, M. A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Res. 2020, 171, 115386. [Google Scholar] [CrossRef] [PubMed]
- Aller, L.; Bennet, T.; Lehr, J.H.; Petty, R. DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. In U.S. Environmental Protection Agency Report; EPA 600/2-87; Environmental Research Laboratory, Office of Research and Development: Worthington, OH, USA, 1985; p. 163. [Google Scholar]
- Foster, S.S.D. Groundwater recharge and pollution vulnerability of British aquifers: A critical review. In Groundwater Pollution, Aquifer Recharge and Vulnerability; Robins, N.S., Ed.; Geological Society, London, Special Publications: London, UK, 1998; Volume 130, pp. 7–22. [Google Scholar]
- Van Stempvoort, D.; Ewert, L.; Wassenaar, L. Aquifer vulnerability index: GIS-compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef]
- Civita, M. Le Carte Della Vulnerabilita Degli Acquiferi All Inquinamento: Teoria e Pratica; Pitagora Editrice: Bologna, Italy, 1994; pp. 325–333. [Google Scholar]
- Civita, M.; De-Regibus, C. Sperimentazione di alcune metodologie per la valutazione della vulnerabilita` degli aquiferi. In Quaderni di GeologiaApplicata, Pitagora Edition; Pitagora Editrice: Bologna, Italy, 1995. [Google Scholar]
- Civita, M.; De Maio, M. SINTACS Un sistema parametrico per la valutazione e la cartografia della vulnerabilità degli acquiferi all’inquinamento. In Metodologia e Automazione; Pitagora Editrice: Bologna, Italy, 1997; 191p. [Google Scholar]
- Dörfliger, N.; Jeannin, P.Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef]
- Ribeiro, L. Desenvolvimento de umíndice para avaliar a susceptibilidadedosaquíferos à contaminação, Nota interna. ERSHA-CVRM, 2000; in press. 8p. [Google Scholar]
- Pételet-Giraud, E.; Dörfliger, N.; Crochet, P. RISKE: Méthode d’évaluationmulticritère de la vulnérabilitédesaquifèreskarstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéologie 2000, 4, 71–88. [Google Scholar]
- Goldscheider, N.; Klute, M.; Sturm, S.; Hötzl, H. The PI method—A GIS-based approach to mapping groundwater v ulnerability with special consideration of karst aquifers. Z. Für Angew. 2000, 46, 157–166. [Google Scholar]
- Chachadi, A.G.; Lobo-Ferreira, J.P. Sea water intrusion vulnerability mapping of aquifers using GALDIT method. In Proceedings of the Workshop on Modelling in Hydrogeology; Annaba University: Annaba, Algeria, 2001. [Google Scholar]
- Khosravi, K.; Sartaj, M.; Tsai, F.T.; Singh, V.P.; Kazakis, N.; Melesse, A.M.; Prakash, I.; Bui, D.T.; Pham, B.T. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci. Total Environ. 2018, 642, 1032–1049. [Google Scholar] [CrossRef]
- Vu, T.; Ni, C.; Li, W.; Truong, M.; Hsu, S.M. Predictions of groundwater vulnerability and sustainability by an integrated index-overlay method and physical-based numerical model. J. Hydrol. 2021, 596, 126082. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Paull, D.J.; Kramer, M. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Sci. Total Environ. 2022, 822, 153486. [Google Scholar] [CrossRef]
- Edet, A.E. Vulnerability evaluation of a coastal plain sand aquifer with a case example from Calabar, southeastern Nigeria. Environ. Geol. 2004, 45, 1062–1070. [Google Scholar] [CrossRef]
- Pagnozzi, M.; Coletta, G.; Leone, G.; Catani, V.; Esposito, L.; Fiorillo, F. A steady-state model to simulate groundwater flow in unconfined aquifer. Appl. Sci. 2020, 10, 2708. [Google Scholar] [CrossRef]
- Rama, F.; Ramos, D.T.; Muller, J.B.; Corseuil, H.X.; Miotliński, K. Flow field dynamics and high ethanol content in gasohol blends enhance BTEX migration and biodegradation in groundwater. J. Contam. Hydrol. 2019, 222, 17–30. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N.; Vigliotti, M.; Ruberti, D. Modelling actual and future seawater intrusion in the variconi coastal wetland (Italy) due to climate and landscape changes. Water 2019, 11, 1502. [Google Scholar] [CrossRef] [Green Version]
- Drias, T.; Khedidja, A.; Belloula, M.; Saadali, B.; Saibi, H. Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundw. Sustain. Dev. 2020, 11, 100444. [Google Scholar] [CrossRef]
- Kowalski, W.M. Les Stadesd’effondrement du Graben de Tébessa (Confinsalgéro-Tunisien) et la Tectonique Plicative Plio-Quaternaire; Bulletin de la Société d’Histoire Naturelle: Pays de Montbéliard, France, 1997. [Google Scholar]
- Drias, T. Aquifère Hétérogène Sous Climat Semi-Aride: Aspects Hydrodynamique et Hydrochimiques. Exemple de la Plaine de Tébessa, Hydrodynamique et Hydrochimiques. Exemple de la Plaine de Tébessa, Mémoire de Magister; FSTGAT/USTHB: Alger, Algérie, 2004; 106p. [Google Scholar]
- Drias, T.; Toubal, A.C. Cartographie de la vulnérabilité à la pollution de la nappe alluviale de Tebessa-Morsott (bassinversant de l’oued Ksob) extrême Est algérien. Larhyss J. 2015, 22, 35–48. [Google Scholar]
- Durozoy, G. Carte Géologiqueau 1/50 000 de Tébessa, Feuille n° 206; Service des CartesGéologiquesd’Algérie: Algeria, Tebessa, 1956. [Google Scholar]
- Rouabhia, A.; Baali, A.; Fehdi, A. Impact of agricultural activity and lithology on groundwater quality in the Merdja area, Tebessa, Algeria. Arab. J. Geosci. 2010, 3, 307–318. [Google Scholar] [CrossRef]
- Drias, T. Hydrogéologie du Bassin Versant de L’oued Ksob (Tébessa). Vulnérabilité et Protection de la Ressource. Ph.D. Thesis, University of Science and Technology Houari Boumediene, Alger, Algérie, 2013; 135p. [Google Scholar]
- G.C.G. General Company of Geophysics. Geophysical Survey of Tebessa Plain; General Company of Geophysics: Massy, France, 1975; p. 102. [Google Scholar]
- Engel, B.; Navulur, K.; Cooper, B.; Hahn, L. Estimating groundwater vulnerability to nonpoint source pollution from nitrates and pesticides on a regional scale, HydroGIS 96: Application of GIS in Hydrology and Water Resources Management. IAHS Publ. 1996, 235, 521–526. [Google Scholar]
- Wolfe, A.H.; Jonathan, A.; Patz, J.A. Reactive nitrogen and human health: Acute and long-term implications. AMBIO A J. Hum. Environ. 2002, 31, 120–125. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Water and Health in Europe; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Herath, H.M.A.S.; Kubota, K.; Kawakami, T.; Nagasawa, S.; Motoyama, A.; Weragoda, S.K.; Chaminda, G.G.T.; Yatigammana, S.K. Potential risk of drinking water to human health in Sri Lanka. Environ. Forensic 2017, 18, 21–250. [Google Scholar] [CrossRef]
- Boufekane, A.; Yahiaoui, S.; Meddi, H.; Meddi, M. Modified DRASTIC index model for groundwater vulnerability mapping using geostatistic methods and GIS in the Mitidja plain area (Algeria). Environ. Forensics 2021. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Nitrate and Nitrite in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality, 2nd ed.; Health criteria and other supporting information; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Chiang, W.H.; Kinzelbach, W. Processing Modflow. A Simulation Program for Modeling Groundwater Flow and Pollution; Software Instructions Book, 1998; Available online: https://www.researchgate.net/publication/238774706_Processing_MODFLOW-a_Simulation_System_for_Modelling_Groundwater_Flow_and_Pollution (accessed on 12 August 2022).
- Harbaugh, A.W. MODFLOW-2005, the U.S. Geological Survey Modular Groundwater Model: The Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Li, R.; Merchant, J.W. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA. Sci. Total Environ. 2013, 447, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Ghazavi, R.; Ebrahimi, Z. Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int. J. Environ. Sci. Technol. 2015, 12, 2909–2918. [Google Scholar] [CrossRef]
- Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Busico, G.; Alessandrino, L.; Mastrocicco, M. Denitrification in intrinsic and specific groundwater vulnerability assessment: A review. Appl. Sci. 2021, 11, 1065. [Google Scholar]
- Pacheco, F.A.L.; Martins, L.M.O.; Quininha, M.; Oliveira, A.S.; Sanches Fernandes, L.F. Modification to the DRASTIC framework to assess groundwater contaminant risk in rural mountainous catchments. J. Hydrol. 2018, 566, 175–191. [Google Scholar] [CrossRef]
- Sundaram, L.K.V.; Dinesh, V.; Ravikumar, G. Vulnerability assessment of seawater intrusion and effect of artificial recharge in Pondicherry coastal region using GIS. Indian J. Sci. Technol. 2008, 1, 1–7. [Google Scholar] [CrossRef]
- Bhuiyan, C. An approach towards site selection for water banking in unconfined aquifers through artificial recharge. J. Hydrol. 2015, 523, 465–474. [Google Scholar] [CrossRef]
- Javadi, S.; Saatsaz, M.; Shahdany, M.H.; Neshat, A.; Milan, S.; Akbari, S. A new hybrid framework of site selection for groundwater recharge. Geosci. Front. 2021, 12, 101144. [Google Scholar] [CrossRef]
- Zghibi, A.; Merzougui, A.; Mansaray, A.S.; Mirchi, A.; Zouhri, L.; Chekirbane, A.; Msaddek, M.H.; Souissi, D.; Mabrouk-El-Asmi, A.; Boufekane, A. Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion: Insights from the GALDIT Model. Water 2022, 14, 1177. [Google Scholar] [CrossRef]
DRASTIC Vulnerability | Vulnerability Index |
---|---|
Low | 23–100 |
Average | 101–140 |
High | 141–200 |
Very high | 200–226 |
Parameter | Value | Unit |
---|---|---|
Groundwater level | 1.0–78 | m |
Number of layers | 1 | U |
Aquifer thickness | 150–300 | m |
Hydraulic conductivity | 2 × 10−5–3 × 10−4 | m/s |
Specific storage | 8–22 | % |
Recharge | 84,354 | m3/day |
Withdrawal (wells) | 36,986 | m3/day |
Stream leakage | 195,320 | m3/day |
Boundary limits | 147,953 | m3/day |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boufekane, A.; Belloula, M.; Busico, G.; Drias, T.; Reghais, A.; Maizi, D. Hybridization of DRASTIC Method to Assess Future GroundWater Vulnerability Scenarios: Case of the Tebessa-Morsott Alluvial Aquifer (Northeastern Algeria). Appl. Sci. 2022, 12, 9205. https://doi.org/10.3390/app12189205
Boufekane A, Belloula M, Busico G, Drias T, Reghais A, Maizi D. Hybridization of DRASTIC Method to Assess Future GroundWater Vulnerability Scenarios: Case of the Tebessa-Morsott Alluvial Aquifer (Northeastern Algeria). Applied Sciences. 2022; 12(18):9205. https://doi.org/10.3390/app12189205
Chicago/Turabian StyleBoufekane, Abdelmadjid, Moufida Belloula, Gianluigi Busico, Tarek Drias, Azzeddine Reghais, and Djamel Maizi. 2022. "Hybridization of DRASTIC Method to Assess Future GroundWater Vulnerability Scenarios: Case of the Tebessa-Morsott Alluvial Aquifer (Northeastern Algeria)" Applied Sciences 12, no. 18: 9205. https://doi.org/10.3390/app12189205
APA StyleBoufekane, A., Belloula, M., Busico, G., Drias, T., Reghais, A., & Maizi, D. (2022). Hybridization of DRASTIC Method to Assess Future GroundWater Vulnerability Scenarios: Case of the Tebessa-Morsott Alluvial Aquifer (Northeastern Algeria). Applied Sciences, 12(18), 9205. https://doi.org/10.3390/app12189205