Three-Dimensional Finite Element Analysis for Pressure on Flexible Wall Silos
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Limitations of Actual Analysis Method
1.4. Research Objective
- The pressure distributions in square rigid and flexible wall silos.
- The effect of wall deformability.
- The validation of the numerical models using experimental data and the comparison with the Janssen equation taking into consideration its assumptions and limitations.
2. Numerical Approach
2.1. Model Description
2.2. Bulk Solid
2.3. Bulk Solid-Wall Interaction
- Contact pair interaction.
- General contact interaction.
2.4. Boundary Conditions
- Set 1: Prohibit the wall’s lateral movement along the z-axis, U3 = 0.
- Set 2: Prohibit the base’s lateral movement along the z-axis, U3 = 0.
- Set 3: Prevent the lateral movement of the bulk solids in ZSYMM, (U3 = UR1 = UR2 = 0).
- Set 4: Prohibit the base’s movement in the vertical direction in the z-axis, U2 = 0.
- Set 5: Prevent the lateral movement of the bulk solids in XSYMM, (U1 = UR2 = UR3 = 0).
- Set 6: Prohibit the base’s lateral movement along the x-axis, U1 = 0.
- Set 7: Prohibit the wall’s lateral movement along the x-axis, U1 = 0.
2.5. Numerical Result and Validation
2.5.1. Comparison with Experimental Data (Flexible Wall)
- The trend of the finite element distribution matches the average of the experimental work over the entire silo height.
- The finite element lateral wall pressure values are close to those of Lahlouh’s experimental work for all vertical sections, with the coefficient of determination, R2, equaling 0.81, 0.83, and 0.84 for sections 1-1, 2-2, and 3-3, respectively.
2.5.2. Comparison with Janssen Equation
- Finite element results are in great agreement with Lahlouh’s experimental data for flexible silo walls.
- Finite element results closely match Janssen’s predictions for rigid silo walls, where the Janssen method is applicable.
3. Three-Dimensional Analysis of Square Silo
3.1. Pressure in Flexible Wall
3.2. Flat vs. Deep Flexible Silo
3.3. Effect of Wall Thickness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juan, A.; Moran, J.M.; Guerra, M.I.; Couto, A.; Ayuga, F.; Aguado, P.J. Establishing Stress State of Cylindrical Metal Silos Using Finite Element Method: Comparison with ENV 1993. Thin-Walled Struct. 2006, 44, 1192–1200. [Google Scholar] [CrossRef]
- Ahramonline. Available online: https://english.ahram.org.eg/NewsContent/50/1201/414847/AlAhram-Weekly/Egypt/A-Better-Wheat-Season.aspx (accessed on 20 March 2022).
- AyoubMuh. 17 Months Only after Its Inauguration, a 20 Million EP Wheat Silo Collapses! THIS IS EGYPT! Reddit—r/Egypt. 2019. Available online: https://www.reddit.com/r/Egypt/comments/cczzkp/17_months_only_after_its_inauguration_a_20 (accessed on 24 March 2022).
- Ahram Online. 3 Killed, 11 Injured in Wheat Silo Collapse in Alexandria. Available online: https://english.ahram.org.eg/NewsPrint/306592.aspx (accessed on 24 March 2022).
- Bishara, A.G.; Chandrangsu, K.; Mahmoud, M.H. Finite Element Formulation for Farm Silo Analysis. J. Struct. Div. 1977, 103, 1903–1919. [Google Scholar] [CrossRef]
- Ragneau, E.; ARIBERT, J.-M.; Sanad, A.M. Modèle Tri-Dimensionnel Aux Éléments Finis Pour Le Calcul Des Actions Sur Les Parois d’un Silo (Remplissage et Vidange). Constr. Métallique 1994, 2, 3–25. [Google Scholar]
- Ooi, J.Y.; Rotter, J.M. Wall Pressures in Squat Steel Silos from Simple Finite Element Analysis. Comput. Struct. 1990, 37, 361–374. [Google Scholar] [CrossRef]
- Jayachandran, L.E.; Nitin, B.; Rao, P.S. Simulation of the Stress Regime during Grain Filling in Bamboo Reinforced Concrete Silo. J. Stored Prod. Res. 2019, 83, 123–129. [Google Scholar] [CrossRef]
- Sanad, A.M.; Ooi, J.Y.; Holst, J.; Rotter, J.M. Computations of Granular Flow and Pressures in a Flat-Bottomed Silo. J. Eng. Mech. 2001, 127, 1033–1043. [Google Scholar] [CrossRef]
- Trahair, N.S.; Abel, A.; Ansourian, P.; Irvine, H.M.; Rotter, J.M. Structural Design of Steel Bins for Bulk Solids. Aust. Inst. Steel Constr. 1983, 4, 163–164. [Google Scholar]
- Rotter, J.M.; Goodey, R.J.; Brown, C.J. Towards Design Rules for Rectangular Silo Filling Pressures. Eng. Struct. 2019, 198, 109547. [Google Scholar] [CrossRef]
- Sanad, A.M. Analyse Tridimensionnelle Des Actions Aux Parois Des Silos-Modélisation Par Éléments Finis et Méthodes Simplifiées (Remplissage et Vidange). Ph.D. Thesis, INSA, Rennes, France, 1997. [Google Scholar]
- Goodey, R.J. Rectangular Silos; Interaction of Structure and Stored Bulk Solid. Ph.D. Thesis, Brunel University, School of Engineering and Design, Uxbridge, UK, 2002. [Google Scholar]
- Roberts, I.I. Determination of the Vertical and Lateral Pressures of Granular Substances. Proc. R. Soc. Lond. 1883, 36, 228–231. [Google Scholar] [CrossRef]
- Janssen, H.A. Versuche Uber Getreidedruck in Silozellen. Z. Ver. Dtsch. Ing. 1895, 39, 1045–1049. [Google Scholar]
- Goodey, R.J.; Brown, C.J.; Rotter, J.M. Rectangular Steel Silos: Finite Element Predictions of Filling Wall Pressures. Eng. Struct. 2017, 132, 61–69. [Google Scholar] [CrossRef]
- Airy, W. The Pressure of Grain. (Including Appendixes). Minutes Proc. Inst. Civ. Eng. 1898, 131, 347–358. [Google Scholar] [CrossRef]
- Reimbert, M.L.; Reimbert, A.M. Silos: Theory and Practice; Trans Tech Pub.: Bay Village, OH, USA; Clausthal, Germany, 1976. [Google Scholar]
- Ooi, J.Y.; Rotter, J.M. The Effect of Wall Flexibility on Pressures in Squat Steel Silos. In Second International Conference on Bulk Materials Storage, Handling and Transportation: 1986; Preprints of Papers: 1986; Preprints of Papers; Institution of Engineers: Barton, Australia, 1986; pp. 115–116. [Google Scholar]
- Rotter, J.M. Guide for the Economic Design of Circular Metal Silos; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Jarrett, N.D. A Study of the Influence of Wall Flexibility on Pressure in Rectangular Silos. Ph.D. Thesis, Brunel University, School of Engineering and Design, Uxbridge, UK, 1991. [Google Scholar]
- Ruckenbrod, C.; Eibl, J. Numerical Results to Discharge Processes in Silos. In Proceedings of the International Symposium on Reliable Flow of Particulate Solids, EFChE Publication Series No. 96, Oslo, Norway, 23–25 August 1993; pp. 503–516. [Google Scholar]
- Goodey, R.J.; Brown, C.J.; Rotter, J.M. Verification of a 3-Dimensional Model for FIlling Pressures in Square Thin-Walled Silos. Eng. Struct. 2003, 25, 1773–1783. [Google Scholar] [CrossRef]
- Simulia, D.S. Abaqus/CAE User’s Manual. 2013. Available online: https://www.yumpu.com/en/document/view/11254708/abaqus-cae-users-manual (accessed on 20 March 2022).
- Lahlouh, E.H.; Brown, C.J.; Rotter, J.M. Loads on Rectangular Planform Steel Silos; Research Report; The University of Edinburgh: Edinburgh, UK, 1995. [Google Scholar]
- Rotter, J.M.; Brown, C.J.; Lahlouh, E.H. Patterns of Wall Pressure on Filling a Square Planform Steel Silo. Eng. Struct. 2002, 24, 135–150. [Google Scholar] [CrossRef]
- Hilal, A. Finite Element Modeling of Steel Containment Structures under Lateral Loads. Master’s Thesis, Ain Shams University, Cairo, Egypt, 2015. [Google Scholar]
- EN 1991-4; Eurocode 1-Actions on Structures-Part 4: Silos and Tanks 2006 European Standard. European Committee for Standardization: Brussels, Belgium, 2006.
- Ooi, J.Y.; She, K.M. Finite Element Analysis of Wall Pressure in Imperfect Silos. Int. J. Solids Struct. 1997, 34, 2061–2072. [Google Scholar] [CrossRef]
No. | Parameter | Value |
---|---|---|
1 | Density, ρ (kg/m3) | 1587 |
2 | Poisson’s Ratio, ν | 0.3164 |
3 | Wall/friction coefficient, µ | 0.445 |
4 | Internal angle of friction, β | 45.1 |
5 | Initial void ratio, e0 | 0.67 |
6 | Logarithmic bulk modulus, λ | 0.002 |
7 | Initial yield stress, σco | 0.25 |
8 | Dilation angle, ψ | 0 |
9 | Elastic tensile limit, Ptel (kPa) | 0 |
No. | Parameter | Value |
---|---|---|
1 | Density, ρ (kg/m3) | 7500 |
2 | Poisson’s Ratio, ν | 0.3 |
3 | Young’s Modulus (GPa) | 210 |
4 | Yield stress (MPa) | 240 |
5 | Plastic strain | 0 |
No. | Square Silo Side “a”, Meters | Height “H”, Meters | H/a |
---|---|---|---|
1 | 0.5 | 2.5 | 5 |
2 | 1 | 2.5 | 2.5 |
3 | 1.25 | 2.5 | 2 |
4 | 1.67 | 2.5 | 1.5 |
5 | 2.5 | 2.5 | 1 |
6 | 6.25 | 2.5 | 0.4 |
7 | 12.5 | 2.5 | 0.2 |
Silo Classification | hc/dc |
---|---|
Slender | hc/dc ≥ 2 |
Intermediate | 1 < hc/dc < 2 |
Squat | 0.4 < hc/dc ≤ 1 |
Retaining silos | hc/dc ≤ 0.4 |
H/a | 5.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.4 | 0.2 |
---|---|---|---|---|---|---|---|
% of Loads on Wall | 75.2 | 54.7 | 47.3 | 38.0 | 26.6 | 10.5 | 4.9 |
% of Loads on Base | 24.8 | 45.3 | 52.7 | 62.0 | 73.4 | 89.5 | 95.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilal, A.; Sanad, A.M.; Abdelbarr, M.H.; Ramadan, O.M.O.; Abdalla, H.A. Three-Dimensional Finite Element Analysis for Pressure on Flexible Wall Silos. Appl. Sci. 2022, 12, 9251. https://doi.org/10.3390/app12189251
Hilal A, Sanad AM, Abdelbarr MH, Ramadan OMO, Abdalla HA. Three-Dimensional Finite Element Analysis for Pressure on Flexible Wall Silos. Applied Sciences. 2022; 12(18):9251. https://doi.org/10.3390/app12189251
Chicago/Turabian StyleHilal, Alhussein, Abdel Monem Sanad, Mohamed H. Abdelbarr, Osman M. O. Ramadan, and Hany A. Abdalla. 2022. "Three-Dimensional Finite Element Analysis for Pressure on Flexible Wall Silos" Applied Sciences 12, no. 18: 9251. https://doi.org/10.3390/app12189251
APA StyleHilal, A., Sanad, A. M., Abdelbarr, M. H., Ramadan, O. M. O., & Abdalla, H. A. (2022). Three-Dimensional Finite Element Analysis for Pressure on Flexible Wall Silos. Applied Sciences, 12(18), 9251. https://doi.org/10.3390/app12189251