Research on Wind Turbine Blade Surface Damage Identification Based on Improved Convolution Neural Network
Abstract
:1. Introduction
1.1. Motivation
1.2. Related Works
1.3. Contributions and Outline
- (1)
- The Enhanced Asymmetric Convolution block (EAC block) is used in the suggested ED Net, which is an improvement on Enhanced Asymmetric Convolution to improve feature extraction.
- (2)
- The Double Pooling Concatenated Input Squeeze-and-excitation Block (DPCI-SE Block) is used in the ED Net. Based on Squeeze-and-excitation Block (SE Block) [23], DPCI-SE Block is a better attention module. It is added to enhance the acquisition of spatial location information of damaged special folds.
- (3)
- The accuracy of ED Net for wind turbine blade surface damage identification mission is between 99.12% and 99.23% in this paper, and the recall is 99.43%. ED Net outperforms some common lightweight CNNs in terms of overall performance.
2. Materials and Methods
2.1. Overview of Convolutional Neural Network
2.2. The Basic Structure and Principle of ED Net
2.2.1. The Structure of ED Net
2.2.2. GELU Activation Function
2.2.3. Smooth Labeling of the Loss Function
2.2.4. EAC Block
2.2.5. DPCI_SE Block
3. Experiments and Analysis
3.1. Experimental Environment
3.2. Wind Turbine Blade Surface Damage Dataset
3.3. Model Evaluation Metrics
3.3.1. Accuracy
3.3.2. Recall, Precision, and F1 Score
3.4. Training of ED Net
3.5. Validation Experiments on the Effectiveness of Improvements
3.6. Transfer Learning Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Balali, M.H.; Nouri, N.; Omrani, E.; Nasiri, A.; Otieno, W. An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems. Int. J. Energy Res. 2017, 41, 1948–1962. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Mikulcic, H.; Kalogirou, S. Sustainable development using renewable energy technology. Renew. Energy 2020, 146, 2430–2437. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Wang, H.; Wang, Y.; Zhang, Z. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis. J. Clean. Prod. 2021, 295, 126496. [Google Scholar] [CrossRef]
- Ribrant, J.; Bertling, L. Survey of Failures in Wind Power Systems with Focus on Swedish Wind Power Plants during 1997–2005. In Proceedings of the IEEE Transactions on Energy Conversion, Tampa, FL, USA, 24–28 June 2007; Volume 22, pp. 167–173. [Google Scholar]
- Shohag, M.A.; Ndebele, T.; Okoli, O. Real-time damage monitoring in trailing edge bondlines of wind turbine blades with triboluminescent sensors. Struct. Health Monit. 2019, 18, 1129–1140. [Google Scholar] [CrossRef]
- Jensen, F.; Terlau, M.; Sorg, M.; Fischer, A. Active Thermography for the Detection of Sub-Surface Defects on a Curved and Coated GFRP-Structure. Appl. Sci. 2022, 11, 9545. [Google Scholar] [CrossRef]
- Li, Z.; Tokhi, M.O.; Marks, R.; Zheng, H.; Zhao, Z. Dynamic Wind Turbine Blade Inspection Using Micro-Polarisation Spatial Phase Shift Digital Shearography. Appl. Sci. 2021, 11, 10700. [Google Scholar] [CrossRef]
- Aizawa, K.; Poozesh, P.; Niezrecki, C.; Baqersad, J.; Inalpolat, M.; Heilmann, G. An acoustic-array based structural health monitoring technique for wind turbine blades. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 8–12 March 2015; Volume 9437. [Google Scholar]
- Joshuva, A.; Sivakumar, S.; Sathishkumar, R.; Deenadayalan, G.; Vishnuvardhan, R. Fault Diagnosis of Wind Turbine Blades using Histogram Features through Nested Dichotomy Classifiers. Int. J. Recent Technol. Eng. 2019, 8, 193–201. [Google Scholar]
- Jaramillo, F.; Gutiérrez, J.M.; Orchard, M.; Guarini, M.; Astroza, R. A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades. Mech. Syst. Signal Processing 2022, 174, 109067–109068. [Google Scholar] [CrossRef]
- Chandrasekhar, K.; Stevanovic, N.; Cross, E.J.; Dervilis, N.; Worden, K. Damage detection in operational wind turbine blades using a new approach based on machine learning. Renew. Energy 2021, 168, 1249–1264. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z. Automatic detection of wind turbine blade surface cracks based on UAV-taken images. IEEE Trans. Ind. Electron. 2017, 64, 7293–7303. [Google Scholar] [CrossRef]
- Fan, L.; Hu, H.; Zhang, X.; Wang, H.; Kang, C. Magnetic Anomaly Detection Using One-Dimensional Convolutional Neural Network with Multi-Feature Fusion. IEEE Sens. J. 2022, 22, 11637–11643. [Google Scholar] [CrossRef]
- Wang, L.; Song, W.; Lan, Y.; Wang, H.; Yue, X.; Yin, X.; Luo, E.; Zhang, B.; Lu, Y.; Tang, Y. A Smart Droplet Detection Approach with Vision Sensing Technique for Agricultural Aviation Application. IEEE Sens. J. 2021, 21, 17508–17516. [Google Scholar] [CrossRef]
- Nho, Y.H.; Ryu, S.; Kwon, D.S. UI-GAN: Generative Adversarial Network-Based Anomaly Detection Using User Initial Information for Wearable Devices. IEEE Sens. J. 2021, 21, 9949–9958. [Google Scholar] [CrossRef]
- Reddy, A.; Indragandhi, V.; Ravi, L.; Subramaniyaswamy, V. Detection of Cracks and damage in wind turbine blades using artificial intelligence-based image analytics. Measurement 2019, 147, 106823. [Google Scholar] [CrossRef]
- Juhi, P.; Sharma, L.; Dhiman, H.S. Wind Turbine Blade Surface Damage Detection based on Aerial Imagery and VGG16-RCNN Framework. arXiv 2021, arXiv:2108.08636. [Google Scholar]
- Zhang, J.; Cosma, G.; Watkins, J. Image Enhanced Mask R-CNN: A Deep Learning Pipeline with New Evaluation Measures for Wind Turbine Blade Defect Detection and Classification. J. Imaging 2021, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wen, C.; Liu, J. Defect identification of wind turbine blade based on multi-feature fusion residual network and transfer learning. Energy Sci. Eng. 2021, 10, 219–229. [Google Scholar] [CrossRef]
- Sarkar, D.; Gunturi, S.K. Wind turbine blade structural state evaluation by hybrid object detector relying on deep learning models. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 8535–8548. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, B.; Liu, Y.; Zhang, P.; Wang, J.; Du, W. Rapid warning of wind turbine blade icing based on MIV-tSNE-RNN. J. Mech. Sci. Technol. 2021, 35, 5453–5459. [Google Scholar] [CrossRef]
- Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.K.; Saif, M. A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF. IEEE Sens. J. 2020, 20, 2023–2033. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Radanliev, P.; De Roure, D. Review of Algorithms for Artificial Intelligence on Low Memory Devices. IEEE Access 2021, 9, 109986–109993. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Bridging nonlinearities and stochastic regularizers with Gaussian error linear units. arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Ding, X.; Guo, Y.; Ding, G.; Han, J. ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 20–26 October 2019; pp. 1911–1920. [Google Scholar]
- Li, X.; Ma, X. Image Semantic Space Segmentation Based on Cascaded Feature Fusion and Asymmetric Convolution Module. Wirel. Commun. Mob. Comput. 2022, 2022. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, H.; Wang, Z.; Huang, C.; Zhang, C. Self-supervised monocular depth estimation via asymmetric convolution block. IET Cyber-Syst. Robot. 2022, 4, 131–138. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Hnoohom, N.; Jitpattanakul, A. A Hybrid Deep Residual Network for Efficient Transitional Activity Recognition Based on Wearable Sensors. Appl. Sci. 2022, 12, 4988. [Google Scholar] [CrossRef]
- Kingma Diederik, P.; Adam, J.B. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Li, Y.; Sun, M.; Qi, Y. Common pests classification based on asymmetric convolution enhance depthwise separable neural network. J. Ambient. Intell. Humaniz. Comput. 2021, 1–9. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–21 June 2018. [Google Scholar]
- Gholami, A.; Kwon, K.; Wu, B.; Tai, Z.; Yue, X.; Jin, P.; Zhao, S.; Keutzer, K. SqueezeNext: Hardware-Aware Neural Network Design. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zou, L.; Wang, Y.; Bi, J.; Sun, Y. Damage Detection in Wind Turbine Blades Based on an Improved Broad Learning System Model. Appl. Sci. 2022, 12, 5164. [Google Scholar] [CrossRef]
Label | Identified as Cracks | Identified as Surface Shedding | Identified as Normal |
---|---|---|---|
Cracks | a | b′ | c′ |
Surface shedding | a′ | b | c″ |
Normal | a″ | b″ | c |
F | Accuracy/% | Recall/% | Precision/% | F1 Score | Params/M |
---|---|---|---|---|---|
2 | 97.91 | 97.63 | 97.49 | 97.56 | 5.40 |
3 | 99.23 | 99.26 | 99.35 | 99.31 | 3.39 |
4 | 99.02 | 98.86 | 98.73 | 98.79 | 3.18 |
5 | 98.51 | 98.72 | 98.65 | 98.68 | 4.26 |
6 | 99.16 | 98.66 | 99.13 | 98.89 | 4.73 |
7 | 98.93 | 98.71 | 98.89 | 98.80 | 5.05 |
Object | Accuracy/% | Recall/% | Precision/% | F1 Score | Params/M |
---|---|---|---|---|---|
CNN By EAC Block | 95.12 | 94.69 | 95.36 | 95.02 | 3.99 |
CNN By AC Block | 94.77 | 94.24 | 94.73 | 94.48 | 3.08 |
CNN By DPCI_SE Block | 97.42 | 97.26 | 97.11 | 97.18 | 3.15 |
CNN By SE Block | 95.37 | 95.67 | 94.86 | 95.26 | 2.87 |
Object | Accuracy/% | Recall/% | Precision/% | F1 Score | Params/M |
---|---|---|---|---|---|
ED Net | 95.12 | 95.31 | 95.42 | 95.36 | 3.99 |
ED Net(c) 1 | 94.77 | 94.52 | 94.23 | 94.37 | 3.32 |
Object | Accuracy/% | Recall/% | Precision/% | F1 Score | Params/M | Training Time |
---|---|---|---|---|---|---|
MobileNet_V1 | 97.91 | 97.60 | 97.26 | 97.43 | 4.20 | 16 min 47 s |
MobileNet_V2 | 98.53 | 98.63 | 97.79 | 98.21 | 3.40 | 16 min 12 s |
1.0-SqueezeNext-23 | 93.59 | 92.14 | 92.70 | 92.42 | 0.72 | 9 min 13 s |
ShuffleNet_V1(g = 3) | 98.51 | 98.46 | 97.59 | 98.02 | 2.40 | 16 min 23 s |
ShuffleNet_V2 | 99.48 | 98.86 | 99.36 | 99.11 | 2.3 | 15 min 19 s |
ED Net | 99.23 | 99.43 | 99.34 | 99.38 | 3.39 | 16 min 06 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Cheng, H. Research on Wind Turbine Blade Surface Damage Identification Based on Improved Convolution Neural Network. Appl. Sci. 2022, 12, 9338. https://doi.org/10.3390/app12189338
Zou L, Cheng H. Research on Wind Turbine Blade Surface Damage Identification Based on Improved Convolution Neural Network. Applied Sciences. 2022; 12(18):9338. https://doi.org/10.3390/app12189338
Chicago/Turabian StyleZou, Li, and Haowen Cheng. 2022. "Research on Wind Turbine Blade Surface Damage Identification Based on Improved Convolution Neural Network" Applied Sciences 12, no. 18: 9338. https://doi.org/10.3390/app12189338
APA StyleZou, L., & Cheng, H. (2022). Research on Wind Turbine Blade Surface Damage Identification Based on Improved Convolution Neural Network. Applied Sciences, 12(18), 9338. https://doi.org/10.3390/app12189338